
I N F S Y S
R E S E A R C H

R E P O R T

Institut für Informationssysteme

Abtg. Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG WISSENSBASIERTE SYSTEME

GAME-THEORETIC REASONING ABOUT

ACTIONS IN NONMONOTONIC

CAUSAL THEORIES

ALBERTO FINZI THOMAS LUKASIEWICZ

INFSYS RESEARCH REPORT 1843-05-04

JUNE 2005

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-05-04, JUNE 2005

GAME-THEORETIC REASONING ABOUT ACTIONS

IN NONMONOTONIC CAUSAL THEORIES

(PRELIMINARY VERSION, JUNE 11, 2005)

Alberto Finzi 1 2 Thomas Lukasiewicz 1 2

Abstract. We present the action language GC+ for reasoning about actions in multi-agent systems
under probabilistic uncertainty and partial observability, which is an extension of the action language
C+ that is inspired by partially observable stochastic games (POSGs). We provide a finite-horizon
value iteration for this framework and show that it characterizes finite-horizon Nash equilibria. We
also describe how the framework can be implemented on top of nonmonotonic causal theories. We
then present acyclic action descriptions in GC+ as a special case where transitions are computable
in polynomial time. We also give an example that shows the usefulness of our approach in practice.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
e-mail: {finzi, lukasiewicz}@kr.tuwien.ac.at.

2Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria 113, I-00198 Rome,
Italy; e-mail: {finzi, lukasiewicz}@dis.uniroma1.it.

Acknowledgements: This work has been partially supported by the Austrian Science Fund Project P18146-
N04 and by a Heisenberg Professorship of the German Research Foundation.

Copyright c© 2005 by the authors

2 INFSYS RR 1843-05-04

1 Introduction

There are several important problems that we have to face in reasoning about actions for mobile agents in
real-world environments. First and foremost, we have to deal with uncertainty, both about the initial sit-
uation of the agent’s world and about the results of the actions taken by the agent (due to noisy effectors
and/or sensors). Second, a closely related problem is that the properties of real-world environments are
in general not fully observable (due to noisy and inaccurate sensors, or because some relevant parts of the
environment simply cannot be sensed), and thus we also have to deal with partial observability. One way
of adding uncertainty and partial observability to reasoning about actions is based on qualitative models in
which all possible alternatives are equally taken into consideration. Another way is based on quantitative
models where we have a probability distribution on the set of possible alternatives, and thus can numeri-
cally distinguish between the possible alternatives.

Well-known first-order formalisms for reasoning about actions such as the situation calculus [23] easily
allow for expressing qualitative uncertainty about the effects of actions and the initial situation of the world
through disjunctive knowledge. Furthermore, there are generalizations of the action language A [11] that
allow for qualitative uncertainty in the form of nondeterministic actions. An important recent formalism in
this family is the action language C+ [12], which is based on the theory of nonmonotonic causal reasoning
presented in [17], and has evolved from the action language C. In addition to allowing for conditional and
nondeterministic effects of actions, C+ also supports concurrent actions as well as indirect effects and pre-
conditions of actions through static causal laws. Closely related to it is the recent planning language K [7].

There are a number of formalisms for probabilistic reasoning about actions. In particular, Bacchus et
al. [1] propose a probabilistic generalization of the situation calculus, which is based on first-order logics
of probability, and which allows to reason about an agent’s probabilistic degrees of belief and how these
beliefs change when actions are executed. Poole’s independent choice logic [21] is based on acyclic logic
programs under different “choices”. Each choice along with the acyclic logic program produces a first-
order model. By placing a probability distribution over the different choices, we then obtain a distribution
over the set of first-order models. Boutilier et al. [5] introduce and explore an approach to first-order (fully
observable) Markov decision processes (MDPs) [22] that are formulated in a probabilistic generalization
of the situation calculus. A companion paper [6] presents a generalization of Golog, called DTGolog, that
combines agent programming in Golog with decision-theoretic planning in MDPs. Probabilistic extensions
of the action language A and its most recent variant C+ have especially been proposed by Baral et al. [2]
and Eiter and Lukasiewicz [8].

Many of the above logical formalisms for reasoning about actions under probabilistic uncertainty take
inspiration from decision-theoretic planning in fully observable Markov decision processes (MDPs) [22] and
the more general partially observable Markov decision processes (POMDPs) [15]. Such logical formalisms
for reasoning about actions that are inspired by decision-theoretic planning are also appealing from the
perspective of decision-theoretic planning, since they allow for [10, 13] (i) compactly representing MDPs
and POMDPs without explicitly referring to atomic states and state transitions, (ii) exploiting such compact
representations for efficiently solving large-scale problems, and (iii) nice properties such as modularity
(parts of the specification can be easily added, removed, or modified) and elaboration tolerance (solutions
can be easily reused for similar problems with few or no additional effort).

The above generalizations of A and C+ in [2, 8] assume that the model of the world consists of a
single agent that we want to control and the environment summarized in “nature”. In realistic applications,
however, we often encounter multiple agents, which may compete or cooperate with each other. Here, the
optimal actions of one agent generally depend on the actions of all the other agents. In particular, there is

INFSYS RR 1843-05-04 3

a bidirectional dependence between the actions of two agents, which generally makes it inappropriate to
model enemies and friends of the controlled agent simply as a part of “nature”.

There are generalizations of MDPs and POMDPs to multi-agent systems with cooperative agents, called
multi-agent MDPs [4] and decentralized POMDPs [3, 19], respectively. Similarly, there are also general-
izations of MDPs and POMDPs to multi-agent systems with competing (that is, not necessarily coopera-
tive) agents, called stochastic games [20] (or Markov games [24, 16]) and partially observable stochastic
games (POSGs) [14, 9], respectively. Multi-agent MDPs (resp., decentralized POMDPs) and stochas-
tic games (resp., POSGs) are similar to MDPs (resp., POMDPs), except that actions (and decisions) are
distributed among multiple agents, where the optimal actions of each agent may depend on the actions
of all the other agents. Stochastic games (resp., POSGs) generalize both normal form games [25] and
MDPs (resp., POMDPs).

In this paper, we present the language GC+ for reasoning about actions in multi-agent systems under
probabilistic uncertainty and partial observability, which is an extension of the language C+ that takes in-
spirations from partially observable stochastic games (POSGs) [14]. The main contributions are as follows:

• We present the action language GC+ for reasoning about actions in multi-agent systems under prob-
abilistic uncertainty and partial observability, which is an extension of both the action language C+
and POSGs. We consider the very general case in which the agents may have different rewards, and
thus may be competitive. Here, we assume that planning and control are centralized as follows. All
agents transmit their local belief states and/or observations to a central agent, which then computes
and returns the optimal local action for each agent.

• Under the above assumption, the high worst-case complexity of POSGs (NEXP-completeness for the
special case of decentralized POMDPs [3]) is avoided, since the POSG semantics of GC+ can be
translated into a belief state stochastic game semantics. We use the latter to define a finite-horizon
value iteration for GC+, and show that it characterizes finite-horizon Nash equilibria.

• We show that GC+ can be implemented on top of reasoning in nonmonotonic causal theories. We
present acyclic action descriptions in GC+ as a special case where transitions are computable in
polynomial time. We also provide an example that shows the usefulness of our approach in practice.

2 Preliminaries

In this section, we recall the basic concepts of the action language C+, normal form games, and partially
observable stochastic games.

2.1 The Action Language C+

We first recall the main concepts of the action language C+; see especially [12] for further details, motiva-
tion, and background.

Syntax. Properties of the world are represented by rigid variables, simple fluents, and statically determined
fluents, while actions are expressed by action variables. The values of rigid variables do not change when
actions are performed, while the ones of simple (resp., statically determined) fluents may directly (resp.,
indirectly) change through actions. The knowledge about the latter is encoded through dynamic (resp.,
static) causal laws over formulas, which are Boolean combinations of atomic assignments.

4 INFSYS RR 1843-05-04

Formally, we thus assume a finite set V of variables, which are divided into rigid variables, simple
fluents, statically determined fluents, and action variables. Every variable X ∈V may take on values from
a nonempty finite domain D(X), where every action variable has the Boolean domain {⊥,>}. We define
formulas inductively as follows. False and true, denoted ⊥ and >, respectively, are formulas. If X ∈V
and x∈D(X), then X =x is a formula (called atom). If φ and ψ are formulas, then also ¬φ and (φ∧ψ).
A literal is an atom X =x or a negated atom ¬X =x (abbreviated as X 6=x). We often abbreviate X =>
(resp., X =⊥) as X (resp., ¬X).

Static causal laws express static knowledge about fluents and rigid variables. They have the form

caused ψ if φ , (1)

where ψ and φ are formulas such that either (a) every variable in ψ is a fluent, and no variable in φ is an
action variable, or (b) every variable in ψ and φ is rigid. Informally, (1) encodes that every state of the world
that satisfies φ should also satisfy ψ. If φ=>, then (1) is abbreviated by caused ψ. Dynamic causal laws
express how simple fluents change when actions are performed. They have the form

caused ψ if φ after θ , (2)

where ψ, φ, and θ are formulas such that every variable in ψ is a simple fluent, and no variable in φ is an
action variable. Informally, (2) encodes that every next state of the world satisfying φ should also satisfy ψ,
if the current state and the executed action satisfy θ. If φ=>, then (2) is abbreviated by caused φ after
θ. If also θ= a1 ∧ · · · ∧ ak ∧ δ, where every ai is an assignment of > to an action variable, then (2) is
abbreviated by a1, . . . , ak causes ψ if δ. Informally, if the current state of the world satisfies δ, then the next
state after concurrently executing a1, . . . , ak satisfies ψ. If ψ=⊥ and φ=>, then (2) is an execution denial
and abbreviated by

nonexecutable θ . (3)

Informally, if a state s and an action α satisfy θ, then α is not executable in s. If θ = a1 ∧ · · · ∧ ak ∧ δ,
then (3) is abbreviated by nonexecutable a1, . . . , ak if δ. Informally, a1, . . . , ak cannot be concurrently
executed in a state satisfying δ. The expression inertial X , where X ∈V , abbreviates the set of all laws (2)
such that φ=ψ= θ=X=x and x∈D(X). Informally, the value of X remains unchanged when actions
are executed, as long as this does not produce any inconsistencies.

A causal law (or axiom) is a static or dynamic causal law. An action description D is a finite set of
causal laws. An initial database φ is a formula without action variables.

Semantics. An action description D represents a system of transitions from states to sets of possible
successor states, while an initial database φ encodes a set of possible initial states. We now define states and
actions, the executability of actions in states, and the above transitions through actions.

An interpretation I of a set of variables V ′⊆V assigns to every X ∈V ′ an element of D(X). We
say I satisfies an atom Y = y, where Y ∈V ′, denoted I |=Y = y, iff I(Y) = y. Satisfaction is extended to
all formulas over V ′ as usual.

Let s be an interpretation of all rigid variables and fluents in V . Let Ds be the set of all ψ such that
either (a) s |=φ for some caused ψ if φ in D, or (b) s |=ψ and ψ=X=x for some simple fluent X ∈X
and x∈D(X). A state s of D is an interpretation s as above that is a unique model of Ds. An action α is
an interpretation of all action variables in V . The action α is executable in a state s, denoted Poss(α, s),
iff s∪α satisfies ¬θ for every nonexecutable θ in D.

INFSYS RR 1843-05-04 5

An action transition is a triple (s, α, s′), where s and s′ are states ofD such that s(X) = s′(X) for every
rigid variable X ∈V , and α is an action that is executable in s. A formula ψ is caused in (s, α, s′) iff either
(a) s′ |=φ for some caused ψ if φ in D, or (b) s∪α |= θ and s′ |=φ for some caused ψ if φ after θ in D.
The triple (s, α, s′) is causally explained iff s′ is the only interpretation that satisfies all formulas caused
in (s, α, s′). For every state s and action α, define Φ(s, α) as the set of all states s′ such that (s, α, s′) is
causally explained. Note that Φ(s, α) = ∅ if no such (s, α, s′) exists, in particular, if α is not executable in
s. We say that D is consistent iff Φ(s, α) 6= ∅ for all actions α and states s such that α is executable in s.
Informally, Φ(s, α) is the set of all possible successor states after executing α in s.

2.2 Normal Form Games

Normal form games from classical game theory [25] describe the possible actions of n> 2 agents and the
rewards (or utilities) that the agents receive when they simultaneously execute one action each. For example,
in two-finger Morra, two players E and O simultaneously show one or two fingers. Let f be the total
numbers of fingers shown. If f is odd, then O gets f dollars from E, and if f is even, then E gets f dollars
from O. Formally, a normal form game G= (I, (Ai)i∈I , (Ri)i∈I) consists of a set of agents I = {1, . . . , n},
n> 2, a nonempty finite set of actions Ai for each agent i∈ I , and a reward (or utility) function Ri : A→R

for each agent i∈ I , which associates with every joint action a∈A= ×i∈I Ai a reward (or utility) Ri(a) to
agent i.

A pure (resp., mixed) strategy specifies which action an agent should execute (resp., which actions an
agent should execute with which probability). Formally, a pure strategy for agent i∈ I is any action ai ∈Ai.
A pure strategy profile is any joint action a∈A. If the agents play a, then the reward to agent i∈ I is
Ri(a). A mixed strategy for agent i∈ I is any probability distribution πi over Ai. A mixed strategy profile
π= (πi)i∈I consists of a mixed strategy πi for each agent i∈ I . If the agents play π, then the expected
reward to agent i∈ I , denoted E[Ri(a) |π] (or Ri(π)), is defined as

∑

a=(aj)j∈I∈ARi(a) · Πj∈Iπj(aj) .

We are especially interested in mixed strategy profiles π, called Nash equilibria, where no agent has the
incentive to deviate from its part, once the other agents play their parts. A mixed strategy profile π= (πi)i∈I

is a Nash equilibrium for G iff for every agent i∈ I , it holds that Ri(π
′
i ◦π−i) 6Ri(π) for every mixed

strategy π′i, where π−i (resp., π′i ◦π−i) is obtained from π by removing πi (resp., replacing πi by π′i). Every
normal form game G has at least one Nash equilibrium among its mixed (but not necessarily pure) strategy
profiles, and many have multiple Nash equilibria. A Nash selection function f associates with every normal
form game G a unique Nash equilibrium f(G). The expected reward to agent i∈ I under f(G) is denoted
by vi

f (G).

2.3 Partially Observable Stochastic Games

We will use POSGs [14] to define the semantics of the action languageGC+, where we assume that planning
and control are centralized as follows. There exists a central agent, which (i) knows the local belief state of
every other agent, (ii) computes and sends them their optimal local actions, and (iii) thereafter receives their
local observations. Hence, we assume a transmission of local belief states and local observations to a central
agent from all other agents, and of the optimal local actions in the reverse direction. Using this assumption,
we can translate POSGs into belief state stochastic games, and then perform a finite-horizon value iteration.

Roughly, a POSG consists of a nonempty finite set of states S, a normal form game for each state s∈S,
a set of joint observations of the agentsO, and a transition function that associates with every state s∈S and

6 INFSYS RR 1843-05-04

joint action of the agents a∈A a probability distribution on all combinations of next states s′ ∈S and joint
observations o∈O. Formally, a partially observable stochastic game (POSG)G=(I, S, (Ai)i∈I , (Oi)i∈I , P,
(Ri)i∈I) consists of a set of agents I = {1, . . . , n}, n> 2, a nonempty finite set of states S, two nonempty
finite sets of actions Ai and observations Oi for each agent i∈ I , a transition function P : S×A →
PD(S × O), which associates with every state s∈S and joint action a∈A=×i∈IAi a probability distri-
bution over S×O, where O=×i∈IOi, and a reward function Ri : S×A→R for each agent i∈ I , which
associates with every state s∈S and joint action a∈A a reward Ri(s, a) to agent i.

Since the actual state s∈S of the POSG G is not fully observable, every agent i∈ I has a belief state bi

that associates with every state s∈S the belief of agent i about s being the actual state. Formally, a belief
state b= (bi)i∈I of G consists of a probability function bi over S for each agent i∈ I . The POSG G then
defines probabilistic transitions between belief states as follows. The new belief state ba,o = (ba,o

i)i∈I after
executing the joint action a∈A in b= (bi)i∈I and jointly observing o∈O is given by:

ba,o
i (s′) =

∑

s∈S P (s′, o | s, a) · bi(s) / Pb(b
a,o
i | bi, a), where

Pb(b
a,o
i | bi, a) =

∑

s′∈S

∑

s∈S P (s′, o | s, a) · bi(s)

is the probability of observing o after executing a in bi. These probabilistic transitions define the fully
observable stochastic game over belief states G′ =(I,B, (Ai)i∈I , Pb, (Ri)i∈I), where B is the set of all
belief states of G.

We next define finite-horizon pure and mixed policies and their rewards and expected rewards, respec-
tively, using the above fully observable stochastic game over belief states. Assuming a finite horizon H > 0,
a pure (resp., mixed) time-dependent policy associates with every belief state b of G and number of steps to
go h∈{0, . . . , H} a pure (resp., mixed) normal form game strategy. Formally, a pure policy α assigns to
each belief state b and number of steps to go h∈{0, . . . , H} a joint action from A. A mixed policy is of the
form π= (πi)i∈I , where every πi assigns to each belief state b and number of steps to go h∈{0, . . . , H}
a probability function πi[b, h] over Ai. The H-step reward (resp., expected H-step reward) for pure (resp.,
mixed) policies can now be defined as usual. In particular, the expected H-step reward to agent i∈ I under
a start belief state b=(bi)i∈I and the mixed policy π, denoted Gi(H, b, π), is defined as

∑

a∈A(Πj∈Iπj [b, 0](aj))·
∑

s∈S bi(s)Ri(s, a) if H = 0;
∑

a∈A(Πj∈Iπj [b,H](aj))·(
∑

s∈S bi(s)Ri(s, a)+
∑

o∈O P (ba,o
i |bi, a) ·Gi(H−1, ba,o, π)) otherwise.

The notion of a finite-horizon Nash equilibrium for a POSG G is then defined as follows. A policy π
is a Nash equilibrium of G under a belief state b iff for every agent i∈ I , it holds that Gi(H, b, π

′
i ◦π−i) 6

Gi(H, b, πi ◦π−i) for all policies π′i. A policy π is a Nash equilibrium of G iff it is a Nash equilibrium of G
under every belief state b.

Nash equilibria of G can be characterized by finite-horizon value iteration from local Nash equilibria
of normal form games as follows. Let f be an arbitrary Nash selection function for normal form games
with the action sets (Ai)i∈I . For every belief state b=(bi)i∈I and number of steps to go h ∈ {0, . . . , H}, let
G[b, h] = (I, (Ai)i∈I , (Qi[b, h])i∈I), where Qi[b, h](a) is defined as follows (for all a∈A and i∈ I):

{

∑

s∈S bi(s)Ri(s, a) if h= 0;
∑

s∈S bi(s)Ri(s, a) +
∑

o∈O P (ba,o
i |bi, a) · v

i
f (G[ba,o, h−1]) otherwise.

INFSYS RR 1843-05-04 7

Let the mixed policy π= (πi)i∈I for the POSG G be defined by πi(b, h) = fi(G[b, h]) for all i∈ I , belief
states b, and number of steps to go h∈{0, . . . , H}. Then, π is a Nash equilibrium of G, and Gi(H, b, π) =
vi
f (G[b,H]) for every i∈ I and belief state b.

3 The Action Language GC+

In this section, we define the action language GC+, which generalizes both the action language C+ and
POSGs.

Syntax. We extend C+ by formulas that express probabilistic transitions and agent rewards as in POSGs
as well as formulas that encode the initial belief state of the agents.

We assume a set of n> 2 agents I = {1, . . . , n}. Each agent i∈ I has (i) a nonempty set of action
variables AV i, where AV 1, . . . ,AV n partitions the set of all action variables AV ⊆V , and (ii) a nonempty
set of possible observations Oi. Every o∈O = ×i∈IOi is a joint observation. A probabilistic dynamic
causal law is of the form

caused [(ψ1 if φ1; o1) : p1, . . . , (ψk if φk; ok) : pk] after δ , (4)

where every caused ψj if φj after δ with j ∈{1, . . . , k} is a dynamic causal law, every oj is a joint obser-
vation, p1, . . . , pk > 0, p1+ · · ·+pk = 1, and k> 1. Informally, if an action α is executed in a state s, where
s∪α |= δ, then with the probability pj the successor states satisfy caused ψj if φj and the agents observe
oj . We omit “if φj” in (4), when φj =>. A reward law for agent i∈ I is of the form

reward i : r after δ , (5)

where r is a real. Informally, if an action α is executed in a state s, where s∪α |= δ, then agent i receives
the reward r. A probabilistic initial database law for i∈ I is of form

i : [ψ1 : p1, . . . , ψk : pk] , (6)

where each ψj with j ∈{1, . . . , k} is a formula without action variables, p1, . . . , pk > 0, p1+ · · ·+pk = 1,
and k> 1. Informally, the initial belief of agent i is that the set of states satisfying ψj holds with the
probability pj .

A probabilistic action description P is a finite set of causal, probabilistic dynamic causal, and reward
laws. A probabilistic initial database Ψ =(Ψi)i∈I consists of a probabilistic initial database law Ψi for
every agent i∈ I .

Semantics. A probabilistic action description P represents a transition system, where every state s and
action α executable in s is associated with a reward to every agent and a probability distribution over possible
successor states. A probabilistic initial database Ψ =(Ψi)i∈I encodes each agent’s probabilistic belief about
the possible initial states.

The set of all states and actions of P and the executability of an action in a state are defined as in
Section 2.1. An action for agent i∈ I is any interpretation over AV i. The set of all actions for agent i is
denoted by Ai. We next define the probabilistic transitions and the rewards encoded in P .

Let s be a state, and let α be an action executable in s. Suppose that P contains exactly one law F
of the form (4) such that s∪α |= δ. For every j ∈{1, . . . , k}, let Pj be obtained from P by replacing F

8 INFSYS RR 1843-05-04

by caused ψj if φj after δ. Let Φj(s, α) be the set of all states s′ such that (s, α, s′) is causally explained
relative to Pj . For each state s′ and o∈O, let Pj(s

′, o|s, α) = pj / |Φj(s, α)|, if s′ ∈Φj(s, α) and o= oj ,
and Pj(s

′, o|s, α) = 0, otherwise. Informally, pj is uniformly distributed among all s′ ∈Φj(s, α). For each
state s′ and o∈O, the probability of moving to the successor state s′ along with jointly observing o, when
executing α in s, denoted P (s′, o|s, α), is defined as

∑k
j=1 Pj(s

′, o|s, α).
Let s be a state, and let α be an action executable in s. Suppose for every agent i∈ I , exactly one law

reward i : r after δ with s∪α |= δ belongs to P . Then, the reward to i when executing α in s, denoted
Ri(s, α), is defined as r.

We next define the initial probabilistic belief of every agent i∈ I , which is encoded in the law Ψi

of the form (6). For each j ∈{1, . . . , k}, let Φj be the set of all states satisfying ψj . For each state s,
let Pj(s) = pj / |Φj |, if s∈Φj , and Pj(s) = 0, otherwise. Agent i’s belief about s being the initial state,
denoted b0i (s), is defined as

∑k
j=1 Pj(s).

In the sequel, we implicitly assume that all P and Ψ are consistent: We say that P is consistent iff for
each state s and action α executable in s, (i) there is exactly one law (4) in P with s∪α |= δ, (ii) each
Φj(s, α) as above is nonempty, and (iii) for every agent i∈ I , there is exactly one law reward i : r after δ
in P with s∪α |= δ. We say that Ψ is consistent iff, for every i∈ I , each Φj as above is nonempty.

Example 1 (Two Robots) We consider the scenario shown in Fig. 1: There are two robots a1 and a2 in a
room looking for an object o1, and trying to bring it out through the only door d1. Both robots can pick up
the object, and also pass it to another robot. A pass attempt is only possible if the two robots are facing in
adjacent positions. If the receiving robot is not expecting the object, then it falls down. If the two robots
are in the same location, then they both cannot perform any pick up and door crossing action. We assume
that the reward for the robot bringing out the object is a bit higher. Hence, there is an additional individual
payoff for the robot able to accomplish the goal.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

a1a1

a2 a2

o1 o1

o1
??

o1

Figure 1: Initial belief states of a2 and a1, respectively.

Let L= {l1,1, . . . , l2,3, d1,nil} be the set of possible locations of the robots and the object, where li,j
encodes the field (i, j), and d1 represents the door. For locations L and L′, let close(L,L′) be true iff L
and L′ are adjacent. We assume the simple fluents at(X), where X ∈{a1, a2, o1}, with the domain L,
as well as holds(R), where R∈{a1, a2}, with the domain {o1,nil}. Let the action variables be given by
goTo(R,L), pickUp(R), passTo(R,R′), receive(R), where R,R′ ∈{a1, a2}, R 6=R′, and L∈L. Each
robot’s set of observations is {obs(holds), obs(notHolds)}. Informally, each robot can only check if it is
carrying something or not after a pick up. We assume the following static causal law:

caused at(O) = nil if holds(R) = O .

INFSYS RR 1843-05-04 9

We introduce the following dynamic causal laws for the action variables passTo(R,R′), receive(R), and
goTo(R,L) (they abbreviate probabilistic causal laws (4) with k=1):

caused holds(R) = nil after passTo(R,R′) with R 6= R′ ,
caused holds(R) = O after holds(R′) = O ∧ passTo(R′, R)∧

receive(R) with R 6= R′ ,
caused at(O) = L after holds(R) = O ∧ passTo(R,R′)∧

¬receive(R′) ∧ at(R,L) with R 6= R′ ,
caused at(R) = L after goTo(R,L) .

Here, if R fails to pass the object O, the latter remains in the location of R. For pickUp(R), we introduce
the following probabilistic causal law, assuming pickUp(R) can fail, and obs(notHolds) can give incorrect
positive results:

caused [(holds(R) = O ; obs(holds)) : 0.7,
(holds(R) = O ; obs(notHolds)) : 0.1,
(holds(R) = nil ; obs(notHolds)) : 0.2]

after pickUp(R) ∧ at(R) = L ∧ at(O) = L ,

We assume the following execution denials:

nonexecutable pickUp(R) ∧ holds(R) 6= nil ,
nonexecutable pickUp(R) ∧ at(R) = L ∧ at(o1) 6= L ,
nonexecutable pickUp(R) ∧ at(R′) = L ∧ at(R) = L ,
nonexecutable goTo(R,L) ∧ at(R) = L′ ∧ ¬close(L,L′) ,
nonexecutable goTo(R, d1) ∧ at(R) = L ∧ at(R′) = L ,
nonexecutable passTo(R,R′) ∧ at(R)=L ∧ at(R′)=L′ ∧ ¬close(L,L′) .

where R′ 6=R and L′ 6=L. Furthermore, every robot can execute only one action at a time, that is, for any
two distinct actions α and α′ of either robot a1 or a2:

nonexecutable α ∧ α′ .

For every simple fluentX , we assume the inertial law inertialX . Finally, the reward function is defined by:

reward ai : 100 after αi ∧ holds(ai, O) ,
reward ai : 90 after αi ∧ holds(aj , O) with i 6= j ,
reward ai : 10 after α ∧ holds(ai, O) with α 6= αi ,
reward ai : 0 after α ∧

∧

i=1,2 ¬holds(ai, O) with α 6= αi.

where αi = goTo(ai, d1). The robot achieving the goal receives a high reward, the other one a bit less. If a
robot moves carrying something, it also receives a small payoff.

4 Finite-Horizon Value Iteration

In this section, we define finite-horizon Nash equilibria for probabilistic action descriptions P in GC+ and
provide a finite-horizon value iteration for computing them.

10 INFSYS RR 1843-05-04

Nash Equilibria. We first define belief states and probabilistic transitions between them. A belief state
of P is of the form b= (bi)i∈I , where every bi is a probability function over the set of states of P . An action α
is executable in b= (bi)i∈I iff for every i∈ I the action α is executable in some state s with bi(s)> 0. Then,
the new belief state bα,o = (bα,o

i)i∈I after executing α in b and observing o∈O is given by:

bα,o
i (s′)=

∑

s∈S,Poss(α,s) P (s′, o|s, α)·bi(s)/P (bα,o
i |bi, α), where

P (bα,o
i | bi, α) =

∑

s′∈S

∑

s∈S,Poss(α,s) P (s′, o | s, α) · bi(s)

is the probability of observing o after executing α in bi.
A mixed policy is of the form π= (πi)i∈ I , where each πi assigns to every belief state b and number of

steps to go h∈{0, . . . , H} a probability function over Ai. The expected H-step reward to i∈ I under an
initial belief state b=(bi)i∈I and the mixed policy π, denoted Gi(H, b, π), is defined as

∑

α(Πj∈Iπj [b, 0](αj))·
∑

s∈S,Poss(α,s) bi(s)Ri(s, α) if H = 0;
∑

α(Πj∈Iπj [b,H](αj))·(
∑

s∈S,Poss(α,s) bi(s)Ri(s, α)+
∑

o∈O P (bα,o
i |bi, α) ·Gi(H−1, bα,o, π)) otherwise.

A policy π is a Nash equilibrium of G iff for each agent i∈ I and each belief state b, it holds that
Gi(H, b, π

′
i ◦π−i) 6 Gi(H, b, πi ◦π−i) for all π′i. We are especially interested in partial Nash equilibria,

which are only defined for an initial belief state and all future belief states within a fixed horizon.

Algorithm. We characterize Nash equilibria of P by finite-horizon value iteration from local Nash equi-
libria of normal form games. We assume an arbitrary Nash selection function f for normal form games with
action set (Ai)i∈I . For every belief state b=(bi)i∈I and number of steps to go h∈{0, . . . , H}, we consider
the normal form game G[b, h] = (I, (Ai)i∈I , (Qi[b, h])i∈I), where Qi[b, h](α) is defined as follows (for all
actions α and agents i∈ I):

{

∑

s∈S,Poss(α,s) bi(s)Ri(s, α) if h= 0;
∑

s∈S,Poss(α,s) bi(s)Ri(s, α) +
∑

o∈O P (bα,o
i |bi, α) · vi

f (G[bα,o, h−1]) otherwise.

The next result shows that the above finite-horizon value iteration computes a Nash equilibrium for
consistent probabilistic action descriptions P in GC+.

Theorem 2 Let P be a consistent probabilistic action description in GC+, and π= (πi)i∈ I be defined by
πi(b, h) = fi(G[b, h]) for all agents i∈ I , belief states b, and number of steps to go h∈{0, . . . , H}. Then,
π is a Nash equilibrium of G, and Gi(H, b, π) = vi

f (G[b,H]) for all i∈ I and b.

The following theorem shows that every POSG can be encoded as a consistent probabilistic action
description in GC+.

Theorem 3 Let G= (I, S, (Ai)i∈I , (Oi)i∈I , P, (Ri)i∈I) be a POSG. Then, there exists a consistent proba-
bilistic action description D in GC+ that encodes G.

Example 4 (Two Robots cont’d) Suppose the initial belief of robot a1 (resp., a2) is as in Fig. 1, right (resp.,
left) side. In particular, a1 initially believes that o1 is at l1,2 or l2,2, while a2 initially believes that o1 is at l2,3

or l2,2. Given the three possible states s1,2, s2,2, and s2,3 such that si,j |= at(o1)=li,j , let the probabilities
be given by b1(s1,2) = 0.2 and b1(s2,2) = 0.8 for a1, and by b2(s2,3) = 0.4 and b2(s2,2) = 0.6 for a2.

INFSYS RR 1843-05-04 11

How should the two robots act in such an initial situation? We now apply our finite-horizon value itera-
tion algorithm to compute a partial Nash equilibrium. Notice that pickUp(a1, l2,3) and pickUp(a2, l1,2) are
not executable in the initial belief states of a2 and a1, respectively. Hence, pickUp can only be executed
in l2,2. In this case, each agent wants to get to l1,2 first, execute pickUp, and cross the door. Assuming a
3-step horizon, we obtain two pure partial policies αi, one for each agent ai: (1) at 3 steps to go, αi assigns
the action a= goTo(ai, l2,2) to bi, while any executable action bj except for goTo(aj , l2,2) is assigned to bj ;
(2) at 2 steps to go, ai executes pickUpi(ai, l2,2) from bai , while aj avoids goTo(aj , l2,2) from bbj ; (3) at 1
step to go, ai performs goTo(ai, d1) in any reached belief state (both after obs(holds) and obs(notHolds)),
while aj can execute any action. Both α1 and α2 represent a pure partial Nash equilibrium, where the ex-
pected 3-step reward of α1 and α2 for the robot pair (a1, a2) is (70.4, 43.2) and (52.8, 57.6), respectively.
Another Nash equilibrium can be obtained form the previous policies by randomizing the first action selec-
tion with π1(b1, a) = 0.55 for a= goTo(a1, l2,2) (Σβπ1(b1, β) = 0.45 with β 6= a), and π2(b2, a) = 0.56 for
a= goTo(a2, l2,2) (Σβπ2(b2, β) = 0.44 with β 6= a). Depending on the first action execution, the remain-
ing policy is defined as in α1 or α2. In this case, the expected 3-step reward is G1(3, b1, π) = 30.67 and
G2(3, b2, π) = 25.70.

5 Reductions and Special Cases

Computing partial Nash equilibria for a probabilistic action description P and an initial belief state requires
the following computations: (i) computing the set of all states for P , (ii) deciding whether an action α is
executable in a state s, (iii) computing all probabilistic transitions P (s′, o | s, α), and (iv) computing Nash
equilibria of normal form games. Here, (ii) can be easily done in polynomial time on P , while (iv) can be
done with standard technology from game theory (see especially [18]). Finally, (i) and (iii) can be reduced
to reasoning in causal theories as follows.

Reduction to Causal Theories. We first recall the main concepts of causal theories [12]. A (causal) rule
has the form ψ⇐φ with formulas ψ and φ, called its head and body, respectively. A causal theory T is a
finite set of rules. Let I be an interpretation of the variables in T . The reduct of T relative to I , denoted T I ,
is defined as {ψ |ψ⇐φ∈T, I |=φ}. We say I is a model of T iff I is the unique model of T I .

The following result shows that the tasks (i) and (iii) above can be reduced to computing the set of all
models of a causal theory. It follows from the original semantics of C+ based on causal theories [12]. In the
case of definite causal laws, where all law heads ψ in (1) and (2) are literals, the set of all models of the cor-
responding causal theories can be computed using the Causal Calculator and answer set programming [12].

Proposition 5 Let D be an action description.

(a) Let T be the set of all rules ψ⇐φ such that either (i) caused ψ if φ∈D, or (ii) φ=ψ=X=x for some
simple fluent X∈X and x∈I(X). Then, an interpretation s of all fluents and rigid variables is a state of D
iff it is a model of T .

(b) Let α be an action executable in state s. Let Ts∪α be the set of all ψ⇐φ such that either (i) caused ψ if
φ∈D, or (ii) s∪α |= θ for some caused ψ if φ after θ∈D. Then, Φ(s, α) is the set of all models s′ of Ts∪α

that coincide with s on all rigid variables.

Acyclic Action Descriptions. The action description of Section 3 is acyclic, which allows for polyno-
mial-time computations, as we now show. A causal theory T is acyclic relative to W ⊆V iff (i) every rule

12 INFSYS RR 1843-05-04

head is a literal, and (ii) there is a mapping κ from W to the non-negative integers such that κ(X)>κ(Y)
for all X,Y ∈W such that X (resp., Y) occurs in the head (resp., body) of some rule in T . An action
description D is acyclic iff (i) the set of all rules ψ⇐φ with caused ψ if φ∈D is acyclic relative to all
statically determined fluents and rigid variables, and (ii) for each state s and action α executable in s, it
holds that Ts∪α is acyclic relative to all fluents.

The following result shows that, in the acyclic case, every interpretation of the simple fluents produces
at most one state, which is computable in polynomial time. Similarly, the Φ(s, α)’s contain at most one
state, and are computable in polynomial time.

Theorem 6 Let D be an acyclic action description. Then: (a) Every interpretation f of the set of all simple
fluents can be extended to at most one state s of D. (b) Deciding whether such s exists and computing it can
be done in polynomial time. (c) If s is a state and α an action executable in s, then Φ(s, α) is either empty
or a singleton, and it is computable in polynomial time.

6 Summary and Outlook

We have presented the action language GC+ for reasoning about actions in multi-agent systems under
probabilistic uncertainty and partial observability, which is an extension of the action language C+ that is
inspired by partially observable stochastic games (POSGs). We have provided a finite-horizon value iteration
algorithm and shown that it characterizes finite-horizon Nash equilibria. We have also given a reduction to
nonmonotonic causal theories and identified the special case of acyclic action descriptions in GC+, where
transitions are computable in polynomial time.

An interesting topic of future research is to define similar action languages for more general classes of
POSGs and decentralized POMDPs.

References

[1] F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning about noisy sensors and effectors in the
situation calculus. Artif. Intell., 111(1-2):171–208, 1999.

[2] C. Baral, N. Tran, and L.-C. Tuan. Reasoning about actions in a probabilistic setting. In Proceedings
AAAI-2002, pp. 507–512, 2002.

[3] D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentralized control of Markov
decision processes. In Proceedings UAI-2000, pp. 32–37, 2000.

[4] C. Boutilier. Sequential optimality and coordination in multiagent systems. In Proceedings IJCAI-
1999, pp. 478–485, 1999.

[5] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order MDPs. In Pro-
ceedings IJCAI-2001, pp. 690–700, 2001.

[6] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level agent program-
ming in the situation calculus. In Proceedings AAAI-2000, pp. 355–362, 2000.

[7] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to knowledge-
state planning, II: The DLVK system. Artif. Intell., 144(1-2):157–211, 2003.

INFSYS RR 1843-05-04 13

[8] T. Eiter and T. Lukasiewicz. Probabilistic reasoning about actions in nonmonotonic causal theories. In
Proceedings UAI-2003, pp. 192–199, 2003.

[9] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Game theoretic control for robot teams.
In Proceedings ICRA-2005, pp. 1175–1181, 2005.

[10] N. H. Gardiol and L. P. Kaelbling. Envelope-based planning in relational MDPs. In Proceedings
NIPS-2003, 2003.

[11] M. Gelfond and V. Lifschitz. Representing action and change by logic programs. J. Logic Program.,
17:301–322, 1993.

[12] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theories. Ar-
tif. Intell., 153(1-2):49–104, 2004.

[13] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new environments in
relational MDPs. In Proceedings IJCAI-2003, pp. 1003–1010, 2003.

[14] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for partially observable
stochastic games. In Proceedings AAAI-2004, pp. 709–715, 2004.

[15] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

[16] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In Proceedings
ICML-1994, pp. 157–163, 1994.

[17] N. McCain and H. Turner. Causal theories of action and change. In Proceedings AAAI-1997, pp.
460–465, 1997.

[18] R. McKelvey and A. McLennan. Computation of equilibria in finite games. In Handbook of Computa-
tional Economics, pp. 87–142. Elsevier, 1996.

[19] R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and S. Marsella. Taming decentralized POMDPs:
Towards efficient policy computation for multiagent settings. In Proceedings IJCAI-2003, pp. 705–
711, 2003.

[20] G. Owen. Game Theory: Second Edition. Academic Press, 1982.

[21] D. Poole. Decision theory, the situation calculus and conditional plans. Electronic Transactions on
Artificial Intelligence, 2(1-2):105–158, 1998.

[22] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,
1994.

[23] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical
Systems. MIT Press, 2001.

[24] J. van der Wal. Stochastic Dynamic Programming, volume 139 of Mathematical Centre Tracts. Morgan
Kaufmann, 1981.

[25] J. von Neumann and O. Morgenstern. The Theory of Games and Economic Behavior. Princeton
University Press, 1947.

