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Abstract. The NP-hard general factor problem asks, given a graph and for each vertex a list
of integers, whether the graph has a spanning subgraph where each vertex has a degree that
belongs to its assigned list. The problem remains NP-hard even if the given graph is bipar-
tite with partition U ] V , and each vertex in U is assigned the list {1}; this subproblem ap-
pears in the context of constraint programming as the consistency problem for the extended
global cardinality constraint. We show that this subproblem is fixed-parameter tractable
when parameterized by the size of the second partite set V . More generally, we show that
the general factor problem for bipartite graphs, parameterized by |V |, is fixed-parameter
tractable as long as all vertices in U are assigned lists of length 1, but becomes W[1]-hard if
vertices in U are assigned lists of length at most 2. We establish fixed-parameter tractability
by reducing the problem instance to a bounded number of acyclic instances, each of which
can be solved in polynomial time by dynamic programming.
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1 Introduction
To find in a given graph a spanning subgraph (or factor) that satisfies certain degree constraints is a
fundamental task in combinatorics that entails several classical polynomial-time solvable problems
such as PERFECT MATCHING (the factor is 1-regular), r-FACTOR (the factor is r-regular), and
(a, b)-FACTOR (the degree of each vertex v in the factor lies in a given interval (av, bv)). Lovász [7,
8] introduced the following NP-hard problem which generalizes all mentioned factor problems:

GENERAL FACTOR

Instance: A graph G = (V,E) and a mapping K that assigns to each vertex v ∈ V a
set K(v) ⊆ {0, . . . , d(v)} of integers.

Question: Is there a subset F ⊆ E such that for each vertex v ∈ V the number of
edges in F incident with v is an element of K(v)?

The problem remains NP-hard even for bipartite graphs G = (U ]V,E) where K(u) = {1} for all
u ∈ U and K(v) = {0, 3} for all v ∈ V . Cornuéjols [4] obtained a dichotomy result that classifies
the complexity of all GENERAL FACTOR problems that are formed by restricting the sets K(v) to
a fixed class C of sets of integers. For each class C the corresponding problem is either polynomial
or NP-complete.

In this paper we study the parameterized complexity of GENERAL FACTOR for bipartite graphs
G = (U ] V,E) parameterized by the size of V . Our main results can be summarized as follows.

The problem GENERAL FACTOR for bipartite graphs G = (U ] V,E), parameterized
by the size of V , is

(1) fixed-parameter tractable if |K(u)| ≤ 1 for all u ∈ U ;

(2) W[1]-hard if |K(u)| ≤ 2 for all u ∈ U .

We establish result (1) by a novel combination of concepts from polynomial-time algorithmics (al-
ternating cycles) with concepts from fixed-parameter algorithmics (data reduction and annotation).

Next we briefly discuss an application of our fixed-parameter tractability result. Constraint
Programming (CP) is a general-purpose framework for combinatorial problems that can be solved
by assigning values to variables such that certain restrictions on the combination of values are satis-
fied; the restrictions are formulated by a combination of so-called global constraints. For example
the global constraint ALLDIFFERENT enforces that certain variables must all be assigned to mu-
tually different values. The Catalog of Global Constraints [1] lists hundreds of global constraints
that are used to model various real-world problems. For several global constraints the consistency
problem (i.e., deciding whether there exists an allowed value assignment) is NP-complete [3]. It is
an interesting line of research to study such global constraints under the framework of parameter-
ized complexity. We think that global constraints are an excellent platform for deploying efficient
fixed-parameter algorithms for real-world applications.

An important global constraint is the extended global cardinality constraint (or EGC con-
straint, for short) [14]. Let X be a finite set of variables, each variable x ∈ X given with a finite
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set D(x) of possible values. An EGC constraint over X is specified by a mapping that assigns to
each value d ∈ D :=

⋃
x∈X D(x) a set K(d) of non-negative integers. The constraint is consistent

if one can assign each variable x ∈ X a value α(x) ∈ D(x) such that |α−1(d)| ∈ K(d) holds
for all values d ∈ D. The consistency problem for EGC constraints can clearly be expressed as
an instance (G,K ′) of GENERAL FACTOR where G, the value graph of the constraint [14], is
the bipartite graph (X ] D, {xd : d ∈ D(x) }) and K ′ is the degree list assignment defined by
K ′(x) = {1} for all x ∈ X and K ′(d) = K(d) for all d ∈ D. Hence our result (1) renders
the consistency problem for EGC constraints fixed-parameter tractable when parameterized by the
number |D| of values.

1.1 Related Work

The parameterized complexity of EGC constraints was first studied by Samer and Szeider [12]
using the treewidth of the value graph as the parameter. For value graphs of bounded degree it
is easy to see that the consistency problem is fixed-parameter tractable for this parameter, as one
can express the restrictions imposed by the sets K(v) in monadic second-order logic, and use
Courcelle’s Theorem. However, for graphs of unbounded degree the problem is W[1]-hard. That
instances of unbounded degree but bounded treewidth are solvable in non-uniform polynomial
time (i.e., the consistency problem is in XP) can be shown by means of an extension of Courcelle’s
Theorem [13]. A further parameterization of GENERAL FACTOR was considered by Mathieson
and Szeider [9], taking as the parameter the number of edges that need to be deleted to obtain the
general factor. The problem is W[1]-hard in general but fixed parameter tractable for graphs of
bounded degree.

The parameterized complexity of other global constraints were recently studied by Bessiere et
al. [2], considering, among others, the global constraints NVALUE, DISJOINT, and ROOTS.

In the context of parameterized complexity it is interesting to mention the results of van Hoeve
et al. [15] who compare various algorithms for the SEQUENCE constraint (a global constraint that
is important for various scheduling problems). Although the consistency problem is polynomial
for this constraint, it turns out that a fixed-parameter algorithm outperforms the polynomial-time
algorithm on several realistic instances.

1.2 Notation and Preliminaries

Unless otherwise stated, all graphs considered are finite, simple, and undirected. We denote a
graph G with vertex set V and edge set E by G = (V,E) and write V (G) = V and E(G) = E.
We denote an edge between two vertices u and v by uv or equivalently vu. For a set F of edges
and a vertex v we write NF (v) = {u : uv ∈ F } and we write dF (v) for the number of edges in F
that are incident with v. For a graph G we also write NG(v) = NE(G)(v) and dG(v) = dE(G)(v),
and we omit the subscripts if the context allows.

A degree list assignment K is a mapping that assigns to each vertex v ∈ V (G) a set K(v) ⊆
{0, . . . , dG(v)}. A set F ⊆ E(G) is a general K-factor of G if dF (v) ∈ K(v) holds for each
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v ∈ V (G). Sometimes it is convenient to identify a set F ⊆ E(G) with the spanning subgraph
(V (G), F ) of G.

An instance of a parameterized problem L is a pair (I, k) where I is the main part and k is
the parameter; the latter is usually a non-negative integer. L is fixed-parameter tractable if there
exist a computable function f and a constant c such that instances (I, k) can be solved in time
O(f(k)nc) where n denotes the size of I . FPT is the class of all fixed-parameter tractable decision
problems.

A parameterized reduction is a many-one reduction where the parameter for one problem maps
into the parameter for the other. More specifically, problem L reduces to problem L′ if there is a
mapping R from instances of L to instances of L′ such that (i) (I, k) is a YES-instance of L if
and only if (I ′, k′) = R(I, k) is a YES-instance of L′, (ii) k′ = g(k) for a computable function g,
and (iii) R can be computed in time O(f(k)nc) where f is a computable function, c is a constant,
and n is the size of I . The parameterized complexity classes W[1] ⊆ W[2] ⊆ · · · ⊆ XP are
defined as the closure of certain parameterized problems under parameterized reductions. There
is strong theoretical evidence that parameterized problems that are hard for classes W[i] are not
fixed-parameter tractable.

For more background on parameterized complexity we refer to other sources [5, 6, 10].

2 Fixed-Parameter Tractability
This section is devoted to the proof of our fixed-parameter tractability result. Let BIPARTITE GEN-
ERAL FACTOR WITH SINGLETONS denote the problem GENERAL FACTOR restricted to instances
(G,K) where G = (U ] V,E) is bipartite and |K(u)| ≤ 1 for all u ∈ U . We will show the
following:

Theorem 1. BIPARTITE GENERAL FACTOR WITH SINGLETONS parameterized by the size of V
is fixed parameter tractable.

Let (G,K) be an instance of BIPARTITE GENERAL FACTOR WITH SINGLETONS with G =
(U]V,E) and V = {v1, . . . , vk}. Clearly we may assume thatK(v) /∈ {∅, {0}} for all v ∈ U]V :
if K(v) = ∅ then G has no general K-factor, and if K(v) = {0} then we can delete v from G.
Thus, in particular for each u ∈ U we have K(u) ∈ {{1}, . . . , {k}}.

2.1 General Factors of Edge-Weighted Graphs
Key to our algorithm for BIPARTITE GENERAL FACTOR WITH SINGLETONS is the transforma-
tion to a more general “annotated” problem on edge-weighted graphs that allows a more succinct
representation.

Let G be a graph. A (positive integral) edge-weighting ρ of G is a mapping that assigns to each
edge e ∈ E(G) a non-negative integer ρ(e). We refer to a pair (G, ρ) as an edge-weighted graph.
For a vertex v of G we define dρ(v) as the sum of ρ(e) over all edges incident with v (or 0 if v has
no incident edges). dG(v) denotes as usual the number of edges incident with v, the degree of v.
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Let K be a degree list assignment of G. We define a general K-factor of an edge-weighted graph
(G, ρ) by using ρ(e) as the “capacity” of an edge e. More precisely, we say that an edge-weighting
φ is a general K-factor of the edge-weighted graph (G, ρ) if (i) φ(e) ≤ ρ(e) holds for all edges
e of G and (ii) dφ(v) ∈ K(v) for all v ∈ V (G). Evidently this definition generalizes the above
definition of general K-factors for unweighted graphs (by considering an unweighted graph as an
edge-weighted graph where each edge has weight 1, and a set F of edges as an edge-weighting
that assigns each edge in F the weight 1, and all other edges the weight 0). By GENERAL FACTOR

FOR EDGE-WEIGHTED GRAPHS we refer to the obvious generalization of the decision problem
GENERAL FACTOR to edge-weighted graphs.

In the following we will present several reduction rules that take as input an instance I =
(G, ρ,K) of GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS and produce as output an in-
stance I ′ = (G′, ρ′, K ′) of the same problem (or rejects I as a no-instance). We say that a reduction
rule is sound if it always holds that either both I and I ′ are no-instances or both are yes-instances
(or in case of rejection, I is indeed a no-instance). A reduction rule is polynomial if we can decide
in polynomial time whether it applies to I and we can compute I ′ in polynomial time if the rule
applies.

2.2 Contractions of Modules

Let (G, ρ,K) be an instance of GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS. For an
integer c ≥ 1 we call a subset M ⊆ V (G) a c-module if

1. M is nonempty and independent;

2. K(v) = {c} for all v ∈M ;

3. all vertices in M have exactly the same neighbors;

4. ρ(e) = 1 holds for all edges e ∈ E(G) with one end in M .

Reduction Rule 1. Let M be a c-module of (G, ρ,K). Obtain a new instance (G′, ρ′, K ′) by
replacing M with a new vertex uM that is adjacent with the same vertices as the vertices in M .
Set ρ′(e) = |M | for all edges e incident with uM and ρ′(e) = ρ(e) for all other edges. Set
K ′(uM) = {c|M |} and K ′(v) = K(v) for all other vertices.

Lemma 1. Reduction Rule 1 is sound and polynomial.

Proof. Let φ be a general K-factor of (G, ρ). We define φ′(uMw) =
∑

v∈M φ(vw) for edges uMw
that are incident with uM and φ′(e) = φ(e) for all other edges. Observe that φ′(uMw) ≤ |M | =
ρ′(uMw) and dφ′(uM) =

∑
v∈M dφ(v) = c|M | ∈ K ′(uM), hence φ′ is a general K ′-factor of

(G′, ρ′).
Conversely, let φ′ be a general K ′-factor of (G′, ρ′). Let M = {u1, . . . , us} and let N =

{v1, . . . , vt} be the set of neighbors of uM .
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We define an edge-weighting φ of G. For 0 ≤ i ≤ t let Si =
∑i

i′=1 φ
′(uMvi′); thus S0 = 0 and

St = cs. For 1 ≤ i ≤ t and 1 ≤ j ≤ s we set

φ(viuj) =

{
1 if j ≡ Si−1 + l (mod s) for some 1 ≤ l ≤ φ′(uMvi);

0 otherwise.

For e ∈ E(G) ∩ E(G′) we set φ(e) = φ′(e). Since φ′(uMvi) ≤ s for 1 ≤ i ≤ t this definition is
correct. To see that φ is a general K-factor of G we note that dφ(vi) = dφ′(vi) for all 1 ≤ i ≤ t,
and dφ(uj) = dφ(uM)/s = c ∈ K(uj) for all 1 ≤ j ≤ s.

As it is obvious that the rule is polynomial, the lemma follows.

2.3 Acyclic General Factors
Let φ be a general K-factor of an edge-weighted graph (G, ρ). We say that an edge e ∈ E(G) is
full in φ if φ(e) = ρ(e) and φ(e) > 0, an edge e ∈ E(G) is empty in φ if φ(e) = 0.

The skeleton of φ is the spanning subgraph Gφ of G with E(Gφ) = { e ∈ E(G) : 0 < φ(e) <
ρ(e) }; i.e., E(Gφ) consists of all edges that are neither full nor empty. The full skeleton of φ is the
spanning subgraph G+

φ of G with E(G+
φ ) = { e ∈ E(G) : 0 < φ(e) ≤ ρ(e) }; i.e., E(G+

φ ) consists
of all edges that are not empty. We say that φ is acyclic if its skeleton Gφ contains no cycles (i.e.,
is a forest), φ is fully acyclic if its full skeleton G+

φ contains no cycles.

Lemma 2. If a bipartite edge-weighted graph (G, ρ) has a general K-factor, then it also has an
acyclic general K-factor.

Proof. LetG = (U]V,E) where U = {u1, . . . , up} and V = {v1, . . . , vk}. For an edge-weighting
φ of G and a pair vi, uj with viuj /∈ E(G) we define φ(viuj) = 0. With each edge-weighting φ of
G we associate a vector A(φ) defined as follows:

A(φ) = (φ(v1u1), φ(v1u2), . . . , φ(v1up),

φ(v2u1), φ(v2u2), . . . , φ(v2, up),

· · ·
φ(vku1), φ(vku2), . . . , φ(vkup)).

Let φ be a general K-factor of G such that A(φ) is lexicographically maximal among all vectors of
general K-factors of G. (A vector (a1, . . . , an) is lexicographically larger than (b1, . . . , bn) if for
some i, ai > bi and aj = bj for all j < i.) We are going to show that φ is acyclic.

Suppose to the contrary that the skeleton Gφ contains a cycle C = vj1ui1 . . . vjtuitvj1 . Without
loss of generality, we may assume that j2 = min{j1, . . . , jt}. Moreover we may assume that
i1 < i2 since otherwise we can consider the reverse of C instead.

We define a new general K-factor φ′ of (G, ρ) by setting φ′(vjluil−1
) = φ(vjluil−1

) + 1 and
φ′(vjluil) = φ(vjluil) − 1 for 1 ≤ l ≤ t (computing indices modulo t), and φ′(e) = φ(e) for all
other edges. That φ′ is indeed a general K-factor follows from the following observations:

(i) dφ′(w) ∈ K(w) holds for all w ∈ U ] V since dφ′(w) = dφ(w) ∈ K(w);
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(ii) For each e ∈ E(C) we have φ′(e) ≤ φ(e) + 1 ≤ ρ(e) since e ∈ E(C) ⊆ E(Gφ) and
therefore e is not full in φ.

(iii) For each e ∈ E(C) we have 0 ≤ φ(e)−1 ≤ φ′(e) since e ∈ E(C) ⊆ E(Gφ) and therefore
e is not empty in φ.

Furthermore, we observe that φ′(vj2ui1) > φ(vj2ui1), but all entries in the vector A(φ′) before
φ(vj2ui1) remain the same as in A(φ). Hence A(φ′) is lexicographically larger than A(φ), a con-
tradiction to our assumption that A(φ) is lexicographically maximal. This proves that Gφ is indeed
acyclic.

Let I = (G, ρ,K) be an instance of GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS and
X ⊆ E(G). For a vertex v of G let dX(v) be the sum of ρ(e) over all edges e ∈ X that are incident
with v. Let I − X denote the instance (GX , ρX , KX) obtained from I by deleting X , decreasing
the capacities ρ of all edges not in X by one, and updating the degree list assignment assuming
the edges in X are full. More precisely, we set GX = G − X , ρX(e) = max(ρ(e) − 1, 0) for all
e ∈ E(GX), and for all v ∈ V (GX) we set

KX(v) = { c− dX(v) : c ∈ K(v), c− dX(v) ≥ 0 }.

If φ′ is a generalKX-factor of (GX , ρX) we denote by φ′+X the edge-weighting of (G, ρ) defined
by (φ′ +X)(e) = φ(e) for e ∈ E(GX) and (φ′ +X)(e) = ρ(e) for e ∈ X .

The following lemma is an easy consequence of this definition.

Lemma 3. Let I = (G, ρ,K) be an instance of GENERAL FACTOR FOR EDGE-WEIGHTED

GRAPHS, X ⊆ E(G), and I −X = (GX , ρX , KX).

1. If φ is a general K-factor of (G, ρ) such that X is precisely the set of full edges of φ, then
the restriction of φ to GX is a general KX-factor of (GX , ρX).

2. Conversely, if φ′ is a general KX-factor of (GX , ρX), then φ′ +X is a general K-factor of
(G, ρ) where X is the set of full edges of φ′ +X .

Lemma 4. Let (G, ρ) be a bipartite edge-weighted graph and K a degree list assignment such
that for each edge uv of G we have K(u) = {ρ(uv)} or K(v) = {ρ(uv)}. If (G, ρ) has a general
K-factor, then it also has a fully acyclic general K-factor.

Proof. Assume that (G, ρ) has a general K-factor. By Lemma 2, (G, ρ) has an acyclic general
K-factor φ. Let X be the set of full edges of φ. Let I −X = (GX , ρX , KX) and φX the restriction
of φ to GX . By Lemma 3, φX is a general KX-factor of (GX , ρX), and since φ is acyclic, φX is
fully acyclic (observe that the full skeleton of φX equals the skeleton of φ, i.e., G+

φX
= Gφ). For

each edge uv ∈ X we have KX(u) = {0} or KX(v) = {0}, hence at least one of the ends of any
uv ∈ X is of degree 1 in the full skeleton G+

φ . Since G+
φ can be obtained by adding the edges in

X to the forest Gφ, it follows that also G+
φ is a forest, i.e., φ is fully acyclic.
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2.4 Eliminating Vertices of Low Degree
Reduction Rule 2. Assume thatG has a vertex v of degree 0. If 0 /∈ K(v), then reject the instance;
if 0 ∈ K(v) then delete v from G and let G′ = G − v, ρ′ = ρ, and K ′ the restrictions of K to
V (G′).

Reduction Rule 3. Assume G has a vertex v of degree 1. Let u be the neighbor of v. We let
G′ = G− v, ρ′ the restriction of ρ to E(G′), and we put

K ′(u) = { cu − cv : cu ∈ K(u), cv ∈ K(v), cv ≤ min(ρ(uv), cu) }

and K ′(w) = K(w) for all w ∈ V (G′) \ {u}.

The proof of the following lemma is obvious.

Lemma 5. Reduction Rules 2 and 3 are sound and polynomial.

Proposition 1. GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS can be solved in polynomial
time for edge-weighted forests.

Proof. Let I = (G, ρ,K) be an instance of GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS

such that G is a forest. If V (G) 6= ∅, G has a vertex of degree ≤ 1, and hence Reduction Rule 2
or 3 applies, and we obtain in polynomial time an equivalent instance with one vertex less which
is again a forest (or we reject the instance). By at most |V (G)| applications of the rules we either
reject the instance (I is a no-instance) or we eliminate all the vertices (I is a yes-instance). Thus
the result follows by repeated application of Lemma 5.

2.5 The Algorithm
It remains to put together the above results to show that BIPARTITE GENERAL FACTOR WITH

SINGLETONS parameterized by the size of V is fixed-parameter tractable.
Let (G,K) with V (G) = U ] V be the given instance of the problem. As explained above we

can consider (G,K) as an instance I = (G, ρ,K) of GENERAL FACTOR FOR EDGE-WEIGHTED

GRAPHS letting ρ(e) = 1 for all e ∈ E(G). Let |V | = k.

1. We partition U into maximal sets U1, . . . , Up such that each Ui is a c-module for some 1 ≤
c ≤ k.

2. We apply Reduction Rule 1 with respect to the modules U1, . . . , Up and obtain an instance
IM = (GM , ρM , KM) of GENERAL FACTOR FOR EDGE-WEIGHTED GRAPHS where
GM = (UM ] V,EM) is a bipartite graph with p+ k vertices.

3. We guess a setX ⊆ EM of edges and consider the instance IX = IM−X = (GX , ρX , KX).

4. We guess a spanning forest T of GX and consider the instance IT = (T, ρT , KT ) where ρT

is the restriction of ρX to T and KT = KX . We check if (T, ρT ) has a general KT -factor
using Proposition 1 (i.e., applying the Reduction Rules 2 and 3).

If (T, ρT ) has general KT -factor, then we stop and output YES.
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5. If none of the guesses for X and T produces the answer YES, we stop and output NO.

In the statement of the following theorem we use the O∗-notation which suppresses polynomial
factors [16].

Theorem 2. Given a bipartite graph G = (U ] V,E), k = |V |, and a degree list assignment
K with |K(u)| ≤ 1 for all u ∈ U , we can decide whether G has a general K-factor in time
O∗(2k

22k+k2(k + 1)k2
k+k).

Thus, BIPARTITE GENERAL FACTOR WITH SINGLETONS parameterized by the size of V is
fixed-parameter tractable.

Proof. We show that the above algorithm decides correctly and in the claimed time bound whether
G has a general K-factor.

Due to Lemma 1, (G, ρ) has a general K-factor if and only if (GM , ρM) has a general KM -
factor. By Lemma 2, (GM , ρM) has a general KM -factor if and only if (GM , ρM) has an acyclic
general KM -factor. By Lemma 3, (GM , ρM) has an acyclic general KM -factor if and only if there
is some X such that (GX , ρX) has a fully acyclic general KX-factor. The latter is exactly the case
if some spanning forest T of GX has a general KT -factor. The correctness of the algorithm thus
follows from Proposition 1, it remains to bound its running time.

We may assume that U contains no isolated vertices as such vertices can be ignored with-
out changing the problem. Each Ui is defined by some degree constraint c ∈ {0, . . . , k} and a
nonempty subset of V , hence p ≤ k2k − 1. Since GM has at most k22k edges, there are at most
2k

22k possible choices for X . In a spanning forest T , each vertex has at most one parent. Each
vertex in U has k + 1 alternatives for its parent (including not having one), and each vertex in V
has at most k2k alternatives for its parent (including not having one). Thus, each GX has at most
O((k + 1)k2

k
(k2k)k) possible spanning forests T . It follows that we apply Proposition 1 at most

O(2k
22k(k + 1)k2

k
(k2k)k) = O(2k

22k+k2(k + 1)k2
k+k) times.

Corollary 1. Given a bipartite graph G = (U ] V,E), k = |V |, and a degree list assignment
K with K(u) = {1} for all u ∈ U , we can decide in time O∗(2k

2
(k + 1)k2

k+k) whether G has a
general K-factor.

Proof. We use a simplified version of the above algorithm. In view of Lemma 4 we do not need
to guess a set X of full edges in order to be able to restrict our scope to fully acyclic general
K-factors. Thus we may skip step 3 of the algorithm and save a factor of 2k22k in the running
time.

3 W[1]-Hardness
This section is devoted to establishing the W[1]-hardness result. Let BIPARTITE GENERAL FAC-
TOR WITH PAIRS denote the problem GENERAL FACTOR restricted to instances (G,K) where
G = (U ] V,E) is bipartite and K(u) ∈ {{1}} ∪ { {0, r} : 1 ≤ r ≤ |V | } holds for all u ∈ U . We
will show the following:
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Theorem 3. BIPARTITE GENERAL FACTOR WITH PAIRS parameterized by the size of V is W[1]-
hard.

We give a parameterized reduction from PARTITIONED CLIQUE, which asks whether a given
k-partite graphG = (V1] . . .]Vk, E), where |Vi| = n for all 1 ≤ i ≤ k, has a k-clique (a complete
subgraph on k vertices) in G. This problem is known to be W[1]-complete [11] for parameter k.

For this reduction we need to ensure that exactly one vertex vi is selected from each partite set
Vi, 1 ≤ i ≤ k, and that vi and vj are adjacent for all 1 ≤ i < j ≤ k. For the first part we shall use
the following gadget construction.

Given a set A of non-negative integers with M = max(A) and a number r > 0, we construct a
bipartite graphGA,r = (U ′]V ′, E ′) and a degree list assignmentK as follows. We let U ′ = U∪W
where U = {u1, . . . , uM}, W = {w1, . . . , wM}, and V ′ = {x, y} ∪ Z where Z = {z1, . . . , zr}.
We specify the edge set E ′ in terms of neighborhoods: N(x) = U , N(y) = U ′, and N(z) = W
for all z ∈ Z. We call the vertices of Z the outputs of the gadget. We define the mapping K
as follows: K(u) = {1} for each u ∈ U , K(w) = {0, r + 1} for each w ∈ W , K(x) = A,
K(y) = {M}. We do not apply any degree restrictions to the outputs z ∈ Z and therefore we
put K(z) = {0, . . . ,M} = {0, . . . , d(z)}. We call the graph GA,r together with the degree list
assignment K a selection gadget.

Lemma 6. If a set F of edges forms a general K-factor of a selection gadget GA,r then all outputs
are incident to the same number α of edges in F , and α ∈ A. Conversely, for each α ∈ A there
exists a general K-factor F of GA,r such that each output is incident with exactly α edges of F .

Proof. Suppose that F is a general K-factor of GA,r. Let dF (x) = α ∈ A. Since N(x) = U
and K(u) = {1} for all u ∈ U , it follows that exactly α vertices from U are adjacent with x via
edges of F . Hence the other M − α vertices of U must be adjacent with y via edges of F . Since
K(y) = {M}, y has to be adjacent with α vertices in W via edges in F . Since K(w) = {0, r+1}
for every w ∈ W , these α vertices in W must also be incident to r vertices in Z via edges of F ,
i.e., to all vertices in Z. It follows that dF (z) = α for all z ∈ Z.

Conversely, let α ∈ A. We define a general factor F . We choose Wα ⊆ W and Uα ⊆ U with
|Uα| = |Wα| = α. We put F = {wz : w ∈ Wα, z ∈ Z ∪ {y} } ∪ {uy : u ∈ U \ Uα } ∪ {ux : u ∈
Uα }. It is easy to verify that F is indeed a general K-factor and dF (z) = α for each z ∈ Z.

Let A be a set of non-negative integers, N = max(A) + 1, A′ = {Nα : α ∈ A } and r, r′ ≥ 0
two numbers. We take two vertex disjoint selection gadgets GA,r+1 and GA′,r′+1 and identify one
output z of the first with one output z′ of the second gadget. Let us call this identified vertex q. We
define K(q) = { a+Na : a ∈ A }. We call this new gadget a double selection gadget GA,r,r′ . We
consider the outputs of GA,r+1 and GA′,r′+1 except z and z′ as the outputs of GA,r,r′ . We call the r
outputs that originate fromGA,r+1 the lower outputs, and the r′ outputs that originate fromGA′,r′+1

the upper outputs of GA,r,r′ . If U ] V denotes the vertex set of GA,r,r′ , then |V | = r + r′ + 5.

Lemma 7. If a set F of edges is a general K-factor of a double selection gadget then all lower
outputs are incident to the same number α of edges in F , all upper outputs are incident to the same
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number β of edges in F , and we have α ∈ A and β = αN . Conversely, for each α ∈ A there is a
general K-factor F such that all lower outputs are incident to α edges in F , and all upper outputs
are incident to αN edges in F .

Proof. Let GA,r,r′ be a double selection gadget constructed from two selection gadgets GA,r+1

and GA′,r′+1, and let F be a general factor of GA,r,r′ . Let c = |NF (q) ∩ V (GA,r+1)| and c′ =
|NF (q) ∩ V (GA′,r′+1)|. Clearly c + c′ = dF (q) ∈ K(q). By Lemma 6 we have c ∈ A, c′ ∈ A′,
dF (z) = c for all z ∈ Z and dF (z′) = c′ for all z′ ∈ Z ′, thus the first part of the lemma is shown.
The second part follows easily by using the second part of Lemma 6 twice.

Next we describe the parameterized reduction from PARTITIONED CLIQUE to BIPARTITE GEN-
ERAL FACTOR WITH PAIRS that uses the double selection gadgets. Let G = (V1 ] . . . ] Vk, E)
be an instance of PARTITIONED CLIQUE, and assume n = |Vi| for 1 ≤ i ≤ k. We write
Vi = {vi1, . . . , vin}. For every 1 ≤ i ≤ k, we take a copy Hi of the double selection gadget
GA,r,r′ where A = {1, . . . , n}, r = i − 1 and r′ = k − i. For each pair 1 ≤ i < j ≤ k we
identify an upper output of Hi and a lower output of Hj . We denote the identified vertex as hi,j .
We can choose the identified pairs in such a way that finally each output is identified with exactly
one other output. Let H = (UH ] VH , EH) be the bipartite graph constructed in this way. We
define a degree list assignment K where each identified vertex hi,j , 1 ≤ i < j ≤ k, gets as-
signed the list {Nα + β : viαv

j
β ∈ E(G), α, β ∈ {1, . . . , n} }, and all other vertices inherit the

list assigned to them in the definition of a double selection gadget. Thus (H,K) is an instance of
GENERAL FACTOR that satisfies the properties as stated in Theorem 3 (in fact, for all u ∈ UH we
have K(u) ∈ {{1}} ∪ { {0, r} : 2 ≤ r ≤ k + 1 }). Furthermore, we have |VH | =

(
k
2

)
+ 5k as VH

contains
(
k
2

)
identified vertices and each Hi, 1 ≤ i ≤ k, contributes 5 more vertices to VH . There-

fore the new parameter k′ = |VH | of the BIPARTITE GENERAL FACTOR WITH PAIRS instance is
indeed a function of the old parameter k of the PARTITIONED CLIQUE instance. Furthermore, it is
easy to check that |UH | = k · 2n(n+ 2) and clearly (H,K) can be obtained from G in polynomial
time. It remains to show that the reduction is correct:

Lemma 8. H has a general K-factor if and only if G has a k-clique.

Proof. Let F be a general K-factor of H . For 1 ≤ i ≤ k let Fi = F ∩ E(Hi) and observe that Fi
is a general factor of Hi. Thus, by the first part of Lemma 7 there is some ai ∈ A = {1, . . . , n}
such that dFi

(z) = ai for each lower output of Hi and dFi
(z′) = Nai for each upper output z′ of

Hi. Let 1 ≤ i < j ≤ k and consider the identified vertex hi,j . We have dF (hi,j) = Nai+aj . Since
K(hi,j) = {Nα + β : viαv

j
β ∈ E(G) }, it follows that viaiv

j
aj
∈ E(G). Hence C = { viai : 1 ≤ i ≤

k } induces a clique in G.
Conversely, assume that C ⊆ V (G) induces a k-clique in G. Since G is k-partite, C contains

exactly one vertex vixi from each set Vi, 1 ≤ i ≤ k. By the second part of Lemma 7, each Hi,
1 ≤ i ≤ k, has a general factor Fi such that dFi

(z) = xi for each lower output z and dFi
(z′) = Nxi

for each upper output z′. Let F =
⋃k
i=1 Fi. Since for each pair 1 ≤ i < j ≤ k we have

vxivxj ∈ E(G), it follows that dF (hi,j) = xj + Nxi ∈ K(hi,j), hence F is indeed a general
K-factor of H .
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With Lemma 8 we have shown that our reduction is correct, thus Theorem 3 is established.

4 Conclusion
We have studied the parameterized complexity of general factor problems for bipartite graphs
G = (U ] V,E) where the size of the sets K(u) for u ∈ U is bounded by a small constant and
where |V | is the parameter. There are various further variants of general factor problems whose
parameterized complexities would be interesting to explore, for example, one could consider |U |
instead of |V | as the parameter. A further possibility is to restrict K(v) for all vertices v of one or
both partite sets to a fixed class C of sets of integers, similar to Cornuejols’ dichotomy result [4]. It
would be interesting to reveal fixed-parameter tractable general factor problems that are W[1]-hard
without the restriction of K(v) to a fixed class C and NP-hard without the parameterization.
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