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Abstract. The answer set semantics may assign a logic program no model, due to logical contradiction
or unstable negation, which is caused by cyclic dependency of an atom from its negation. While
logical contradictions can be handled with traditional techniques from paraconsistent reasoning,
instability requires other methods. We consider resorting to a paracoherent semantics, in which
3-valued interpretations are used where a third truth value besides true and false expresses that an
atom is believed true. This is at the basis of the semi-stable model semantics, which was defined using
a program transformation. In this paper, we give a model-theoretic characterization of semi-stable
models, which makes the semantics more accessible. Motivated by some anomalies of semi-stable
model semantics with respect to basic epistemic properties, we propose an amendment that satisfies
these properties. The latter has both a transformational and a model-theoretic characterization that
reveals it as a relaxation of equilibrium logic, the logical reconstruction of answer set semantics, and
is thus called the semi-equilibrium model semantics. We consider refinements of this semantics to
respect modularity in the rules, based on splitting sets, the major tool for modularity in modeling
and evaluating answer set programs. In that, we single out classes of canonical models that are
amenable for customary bottom-up evaluation of answer set programs, with an option to switch to a
paracoherent mode when lack of an answer set is detected. A complexity analysis of major reasoning
tasks shows that semi-equilibrium models are harder than answer sets (i.e., equilibrium models), due
to a global minimization step for keeping the gap between true and believed true atoms as small as
possible. Our results contribute to the logical foundations of paracoherent answer set programming,
which gains increasing importance in inconsistency management, and at the same time provide a
basis for algorithm development and integration into answer set solvers.
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1 Introduction

Answer Set Programming (ASP) is a premier formalism for nonmonotonic reasoning and knowledge repre-
sentation, mainly because of the existence of efficient solvers and well-established relationships to common
nonmonotonic logics. It is a declarative programming paradigm with a model-theoretic semantics, where prob-
lems are encoded into a logic program using rules, and its models, called answer sets (or stable models) [20],
encode solutions; see [6, 10, 18].

As well-known, not every logic program has some answer set. This can be due to different reasons: (1)
an emerging logical contradiction, as e.g. for the program

P = { locked(door)← not open(door); −locked(door) }
where “−” denotes strong (sometimes also called classical) negation and “not” denotes weak (or default
negation); according to the first rule, a door is locked unless it is known to be open, and according to the
second rule it is not locked. The problem here is a missing connection from −locked(door) to open(door).1

(2) Due to cyclic dependencies which pass through negation, as e.g. in the following simplistic program.

Example 1 Russell’s paradox is captured by the logic program

P = {shaves(joe, joe)← not shaves(joe, joe)}
(where joe is the barber), which informally states that Joe shaves himself if we can assume that he is not
shaving himself. Under answer set semantics, P has no model; the problem is a lack of stability, as either
assumption on whether shaves(joe, joe) is true or false can not be justified by the rule.

In general, the absence of an answer set may be well-accepted and indicate that the rules can not be
satisfied under stable negation. There are nonetheless many cases when this is not intended and one might
want to draw conclusions also from a program without answer sets, e.g., for debugging purposes, or in order
to keep a system (partially) responsive in exceptional situations; in particular, if the contradiction or instability
is not affecting parts of a system.

In order to deal with this, Inoue and Sakama [38] have introduced paraconsistent semantics for answer
set programs. While dealing with logical contradictions can be achieved with similar methods as for (non-)
classical logic (cf. also [8, 1, 27]), dealing with cyclic default negation turned out to be tricky. We concentrate
in this article on the latter, in presence of constraints, and refer to it as paracoherent reasoning, in order to
distinguish reasoning under logical contradictions from reasoning on programs without strong negation that
lack stability in models.

With the idea that atoms may also be possibly true (i.e., believed true), Inoue and Sakama defined a
semi-stable semantics which for the program in Example 1 has a model in which shaves(joe, joe) is believed
true; this (arguably) is reasonable, as shaves(joe, joe) can not be false while satisfying the rule. Note however
that believing shaves(joe, joe) is true does not provide a proof that this fact is true in reality; as a mere belief
it is regarded to be weaker than if shaves(joe, joe) would be a fact or derived from a rule.

In fact, semi-stable semantics approximates answer set semantics and coincides with it whenever a
program has some answer set; otherwise, under Occam’s razor it yields models with a least set of atoms
believed to be true. That is, the intrinsic closed world assumption (CWA) of logic programs is slightly relaxed
for achieving stability of models.

In a similar vein, we can regard many semantics for non-monotonic logic programs that relax answer sets
as paracoherent semantics, e.g. [4, 16, 28, 32, 33, 36, 37, 39, 42, 45]. Ideally, such a relaxation meets for a
program P the following properties:

1Constraints (rules with empty head) may be considered as logical contradictions, if ⊥ (falsum) is added to the head; however,
also an instability view is possible, cf. Section 6.2.
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(D1) Every (consistent) answer set of P corresponds to a model (answer set coverage).

(D2) If P has some (consistent) answer set, then its models correspond to answer sets (congruence).

(D3) If P has a classical model, then P has a model (classical coherence).

In particular, (D3) intuitively says that in the extremal case, a relaxation should renounce to the selection
principles imposed by the semantics on classical models (in particular, if a single classical model exists).

Widely-known semantics, such as 3-valued stable models [36], L-stable models [16], revised stable
models [32], regular models [45], and pstable models [28], satisfy only part of these requirements (see
Section 8.2 for more details). Semi-stable models however, satisfy all three properties and thus have been the
prevailing paracoherent semantics.

1.1 Application scenario: inconsistency-tolerant query answering

Paracoherent semantics may be fruitfully employed in different use cases of ASP, such as model building
respectively scenario generation, but also traditional reasoning from the models of a logical theory.

The standard answer set semantics may be regarded as appropriate when a knowledge base, i.e., logic
program, is properly specified adopting the CWA principle to deal with incomplete information. Query
answering over a knowledge base then resorts usually to brave or cautious inference from the answer sets
of a knowledge base; let us focus on the latter here. However, if (unexpected) incoherence arises, then we
lose all information and query answers are trivial. This, however, may not be satisfactory, especially if one
can not modify the knowledge base, which may be due to various reasons. Paracoherent semantics can be
exploited to overcome this problem and to render query answering operational, without trivialization and
inference explosion. In particular, semi-stable model semantics is attractive as it (1) brings in “unsupported”
assumptions, (2) remains close to answer sets in model building, but distinguishes atoms that require such
assumptions from atoms derivable without them, and (3) keeps the CWA/LP spirit of minimal assumptions.

Example 2 Consider a variant of the Russell’s paradox, cf. [38]:

P = {shaves(joe,X )← not shaves(X ,X ); man(paul)}.
While this program has no answer set, the semi-stable model semantics gives us the model {shaves(joe, paul),
man(paul), Kshaves(joe, joe)}, in which shaves(joe, joe) is believed to be true (as expressed by the prefix
’K’); here the incoherent rule shaves(joe, joe)← not shaves(joe, joe), which is an instance of the rule in
P for joe, is isolated from the rest of the program to avoid the absence of models;2 this treatment allows
us to derive, for instance, that shaves(joe, paul) and man(paul) are true; furthermore, we can infer that
shaves(joe, joe) can not be false. Such a capability seems to be very attractive in query answering.

The well-founded semantics (WFS) [42], which is the most prominent approximation of the answer
set semantics, has similar capabilities, but takes intuitively a coarser view on the truth value of an atom,
which can be either true, false, or undefined; in semi-stable semantics, however, undefinedness has a bias
towards truth, expressed by “believed true”(or stronger, by “must be true”); in the example above, under
WFS shaves(joe, joe) would be undefined. Furthermore, undefinedness is cautiously propagated, which may
prevent one from drawing expected conclusions.

Example 3 Consider the following extension of Russell’s paraphrase:

2A similar intuition underlies the CWA inhibition rule in [31] that is used for contradiction removal in logic programs
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P =

{
shaves(joe, joe)← not shaves(joe, joe);
visits barber(joe)← not shaves(joe, joe)

}
.

Arguably one expects that visits barber(joe) is concluded false from this program: to satisfy the first
rule, shaves(joe, joe) can not be false, and thus the second rule can not be applied; thus under CWA,
visits barber(joe) should be false. However, under well-founded semantics all atoms are undefined; in
particular, the undefinedness of shaves(joe, joe) is propagated to visits barber(joe) by the second rule.

The single semi-stable model of P from its epistemic transformation is {Kshaves(joe, joe)}, according
to which shaves(joe, joe) is believed true while visits barber(joe) is false.

Furthermore, it is well-known that the well-founded semantics has problems with reasoning by cases.

Example 4 From the program

P =


shaves(joe, joe)← not shaves(joe, joe);
angry(joe)← not happy(joe); happy(joe)← not angry(joe);
smokes(joe)← angry(joe); smokes(joe)← happy(joe)

 ,

which is incoherent, we can not conclude that smokes(joe) is true under WFS, while we can do so under
semi-stable semantics and its relatives.

We elucidate the relationship between paracoherent semantics and WFS in more detail in Section 8.

1.2 Contributions

Despite the model-theoretic nature of ASP, semi-stable models have been defined by means of a program
transformation, called epistemic transformation. A semantic characterization in the style of equilibrium
models for answer sets [30] was still missing. Such a characterization was desired because working with
program transforms becomes cumbersome, if properties of semi-stable models should be assessed; and
moreover, while the program transform is declarative and the intuition behind it is clear, the interaction of the
rules does not make it easy to understand or see how the semantics works in particular cases.

Starting out from these observations, we have addressed the problem and make the following main
contributions.

– We characterize semi-stable models by pairs of 2-valued interpretations of the original program, similar
to so-called here-and-there (HT) models in equilibrium logic [29, 30]. In the course of this, we point out
some anomalies of the semi-stable semantics with respect to basic rationality properties in modal logics (K
and N) which essentially prohibit a 1-to-1 characterization3 in terms of HT-models. Roughly speaking, the
epistemic transformation misses some links between atoms encoding truth values of atoms, which may lead
in some cases to unintuitive results.

– The anomalies lead us to propose an alternative paracoherent semantics, called semi-equilibrium (SEQ)
model semantics, which remedies the anomalies of the semi-stable model semantics. It satisfies the properties
(D1)-(D3) from above and is fully characterized using HT-models. Informally, semi-equilibrium models are
3-valued interpretations in which atoms can be true, false or believed true; the gap between believed and
(derivably) true atoms is globally minimized. Note that the semantic distinction between believed true and
true atoms in models is important. Other approaches, e.g. CR-Prolog [4], make a syntactic distinction at the
rule level which does not semantically discriminate believed atoms; this may lead to more models. Notably,
SEQ-models can be obtained by an extension of the epistemic transformation that adds further rules.

3By 1-to-1 we mean a one to one and onto (i.e., bijective) correspondence.
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– Resorting to splitting sets [24], the major tool for modularity in modeling and evaluating answer set
programs, we define split SEQ-models, for which the program is evaluated in progressive layers according
to a splitting sequence S = (S1, . . . , Sn) of the atoms. This is motivated by the fact that answer set program
evaluation typically proceeds from bottom to top modules, and that switching to a paracoherent mode on the
encounter of incoherence is possible on the fly. E.g., the program

P = {shaves(joe, joe)← notwoman(joe), adult(joe), not shaves(joe, joe); adult(joe)}

has two SEQ-models: in both adult(joe) is true, and in one shaves(joe, joe) is believed true and woman(joe)
is false, while in the other woman(joe) is believed true and thus shaves(joe, joe) is false. Of these two
models, in lack of any further information the first is more appealing, as there is no rule from which
woman(joe) could be derived.

– In general, the resulting split SEQ-models depend on the particular splitting sequence. We thus introduce
canonical splitting sequences, with the property that the models are independent of any particular member
from a class of splitting sequences, and thus yield canonical models (Section 6). This is analogous to the
perfect models of a (disjunctive) stratified program, which are independent of a concrete stratification [3, 35].
For programs P with a benign form of constraints, the class derived from the strongly connected components
(SCCs) of P warrants this property, as well as modularity properties. For arbitrary programs, independence
is held by a similar class derived from the maximal joined components (MJCs) of P , which merge SCCs
involved in malign constraints.

– We study major reasoning tasks for the semantics above and provide precise characterizations of their
computational complexity for various classes of logic programs. Besides brave and cautious reasoning,
deciding whether a program has a model, respectively recognizing models, is considered. Briefly, the results
show that semi-stable and SEQ-model semantics reside in the polynomial hierarchy one level above the
answer set semantics, and is for brave and cautious reasoning from disjunctive programs Σp

3- respectively
Πp

3-complete; for normal programs, the problems are Σp
2- respectively Πp

2-complete. Notably, split SEQ-
and canonical SEQ-models have the same complexity as SEQ-models for these problems, but the model
existence problem (which is NP-complete for SEQ-models) is harder (Σp

3- resp. Σp
2-complete).

– We compare the SEQ-model semantics to a number of related semantics in the literature. It turns out
that it coincides with the evidential stable model semantics for disjunctive logic programs [39], which has
been defined like the semi-stable model semantics in terms of a two stage program transformation, but
using a rather different program. Thus our results provide as a byproduct also a semantic and computational
characterization of the evidential stable model semantics.

Our results contribute to enhanced logical foundations of paracoherent answer set programming, which
gains increasing importance in inconsistency management. They provide a model-theoretic characterization
and an amendment of the semi-stable semantics, given by the semi-equilibrium semantics, linking it to the
view of answer sets semantics in equilibrium logic; this provides the basis for immediate extensions to richer
classes of logic programs (see Section 9.1). Furthermore, the split SEQ-model semantics, and in particular
the SCC-models semantics, lends itself for a modular use and bottom up evaluation of programs. Cautious
merging of components, as done forMJC-models, aims at preserving independence of components and
thus possible parallel evaluation. This makes the refined semantics attractive for incorporation into answer
set solvers and evaluation frameworks, in order to offer paracoherent features.

4



1.2.1 Organization

The remainder of this article is organized as follows. In the next section, we review answer set programs,
equilibrium logic and semi-stable model semantics. After that, we provide in Section 3 the semantic
characterization of semi-stable models and point out some anomalies, which leads us to introduce semi-
equilibrium models in Section 4. The refinement of the latter relative to splitting sets and arbitrary splitting
sequences is considered in Section 5, while canonical semi-equilibrium models are introduced in Section 6.
Section 7 is devoted to characterize the complexity of various semantics and to computational issues in this
context. Related work is discussed in Section 8, followed by Section 9 that addresses possible extensions.
Section 10 concludes the article with open issues and an outlook. In order not to disrupt the flow of reading,
most proofs have been moved to the Appendix.

2 Preliminaries

In this paper, we consider a propositional setting of logic programs; extensions to the usual non-ground
setting are straightforward. Since we are primarily interested in paracoherence, we also disregard aspects
devoted to paraconsistency, i.e., logical contradictions; more specifically, we exclude strong negation. A
discussion of how the work extends to non-ground programs and strong negation is given in Section 9.1)

We first recall the answer set semantics of disjunctive logic programs, and then its reconstruction as
equilibrium logic based on a non-classical logic.

2.1 Answer Set Programs

Given a propositional signature, i.e., a set of propositional atoms Σ, a (disjunctive) rule r is of the form

a1 ∨ · · · ∨ al ← b1, . . . , bm, not c1, . . . , not cn, (1)

where l + m + n > 0, such that all ai, bj and ck are atoms. As usual, “not” stands for weak or default
negation. The head of r is the set H(r) = {a1, . . . , al}, and the positive respectively negative body is the set
B+(r) = {b1, . . . , bm} respectively B−(r) = {c1, . . . , cn}; the body of r is B(r) = B+(r) ∪ notB−(r),
where for any set S of atoms, not S = {not a | a ∈ S}. Furthermore, At(r) = H(r) ∪ B+(r) ∪ B−(r)
denotes the set of all atoms occurring in r. In abuse of notation, we will denote r also by

H(r)← B(r) or H(r)← B+(r), notB−(r).

A rule r is a (disjunctive) fact, if B(r) = ∅ (we then omit ←); a constraint, if H(r) = ∅; normal, if
|H(r)| ≤ 1; and positive, if B−(r) = ∅.

A (disjunctive logic) program P is a finite set of disjunctive rules (over Σ). A program P is called normal
(resp. positive) if each r ∈ P is normal (resp. positive); P is constraint-free, if P contains no constraints. We
let At(P ) =

⋃
r∈P At(r) and by default Σ = At(P ).

An interpretation is any set I ⊆ Σ of atoms. An interpretation I satisfies a rule r, denoted I |= r, if
I ∩H(r) 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅, and I is a model of a program P (denoted I |= P ),
if I |= r for each rule r ∈ P . A model I of P is minimal, if no model J ⊂ I of P exists; MM (P ) denotes
the set of all minimal models of P .

An interpretation I is a stable model (or answer set) of P , if I ∈ MM (P I), where P I is the well-known
Gelfond-Lifschitz (GL) reduct [20] of P w.r.t. I , which is the positive program P I = {H(r)← B+(r) | r ∈
P,B−(r) ∩ I 6= ∅}. We denote by AS(P ) the set of all answer sets of P .
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Example 5 Consider the program P = {b ∨ c ← not a; d ← c, not b}. It has the minimal models
MM (P ) = {{a}, {b}, {c, d}}, the answer sets AS(P ) = {{b}, {c, d}}; note that I = {a} is not an answer
set as M is not a minimal model of P I = {d← c}.

Recall that the dependency graph of a program P is the directed graph DG(P ) = 〈VDG , EDG〉 with
nodes VDG = At(P ) and edges EDG = {(a, b) | a ∈ H(r), b ∈ B+(r) ∪ B−(r) ∪ (H(r) \ {a}), r ∈ P}.
The strongly connected components (SCCs) of P , denoted SCC(P ), are the SCCs of DG(P ), i.e. the
maximal node sets C ⊆ At(P ) such that every pair of nodes v, v′ ∈ C is connected by some path in G with
nodes only from C.

A program P is stratified, if for each r ∈ P and C ∈ SCC(P ) either H(r) ∩ C = ∅ or B−(r) ∩ C = ∅;
P is headcycle-free (hcf), if |H(r) ∩ C| ≤ 1 for each r ∈ P and C ∈ SCC(P ′), where P ′ = {a← B+(r) |
r ∈ P, a ∈ H(r)}.

Example 6 (cont’d) The program P = {b ∨ c← not a; d← c, not b} is stratified and also headcycle-free.

2.1.1 Splitting sets and sequences

Splitting sets [24] allow one to divide a program P into a lower and a higher part which can be evaluated
bottom up. More formally, a set S ⊆ Σ is a splitting set of P , if for every rule r in P such that H(r)∩S 6= ∅
we have that At(r) ⊆ S. We denote by bS(P ) = {r ∈ P | At(r) ⊆ S} the bottom part of P , and by
tS(P ) = P \ bS(P ) the top part of P relative to S. Note that the union S = S1 ∪ S2 of splitting sets S1, S2
of a program P is also a splitting set of P .

As shown in [24], it holds that (where as usual, “∪M” means adding all atoms in M as facts)

AS(P ) =
⋃

M∈AS(bS(P ))

AS(tS(P ) ∪M). (2)

Example 7 (cont’d) For the program P = {b∨c← not a; d← c, not b}, the set S = {a, b, c} is a splitting
set, and we have bS(P ) = {b ∨ c← not a} and tS(P ) = {d← c, not b}; as AS(P ) = {{b}, {c}}, we get
AS(P ) = AS(bS(P ) ∪ {b}) ∪ AS(bS(P ) ∪ {c}) = {{b}, {c, d}}.

Splitting sets naturally lead to splitting sequences. A splitting sequence S = (S1, . . . , Sn) of P is
a sequence of splitting sets Si of P such that Si ⊆ Sj for each i < j; note that usually Sn ⊂ Σ; the
characterization in (2) can be extended accordingly. With an eye on practical implementation, we do not
consider infinite splitting sequences here, but will comment on them at the end of Section 5.

Example 8 (cont’d) A splitting sequence for P = {b ∨ c ← not a; d ← c, not b} is S = (S1, S2) where
S1 = {a} and S2 = {a, b, c}; bS1(P ) = ∅, bS2(P ) = {b ∨ c← not a} and tS2(P ) = {d← c, not b}.

2.2 Equilibrium Logic

The logic of here-and-there (HT) [30] serves as a valuable basis for characterizing semantic properties of
ASP. It is an intermediate logic between (full) intuitionistic and classical logic, and it coincides with 3-valued
Gödel logic. As such, it considers a full language L± of formulas built over a propositional signature Σ with
the connectives ¬, ∧, ∨,→, and ⊥. We restrict our attention here to formulas of the form

b1 ∧ . . . ∧ bm ∧ ¬bm+1 ∧ . . . ∧ ¬bn→ a1 ∨ · · · ∨ al, (3)

which correspond in a natural way to rules of form (1); every program P corresponds then similarly to a
theory (set of formulas) ΓP . For example, the program P = {a← b; b← not c; c← not a}, corresponds
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to the theory ΓP = {b→ a; ¬c→ b; ¬a→ c}. In the rest of the article, we tacitly use this correspondence.
We note, however, that the key notions extend to the full language, and in this way some of the results to
extensions of the rule language that we consider (see Section 9.1).

As a restricted intuitionistic logic, HT can be semantically characterized by Kripke models, in particular
using just two worlds, namely “here” and “there” (assuming that the here world is ordered before the there
world). An HT-interpretation is a pair (X,Y ) of interpretations X,Y ⊆ Σ such that X ⊆ Y ; it is total, if
X = Y . Intuitively, atoms in X (the here part) are considered to be true, atoms not in Y (the there part) to be
false, while the remaining atoms (from Y \X) are undefined.

Assuming that X |= F denotes satisfaction of a formula φ by an interpretation X in classical logic,
satisfaction of F in HT-logic (an HT-model), denoted (X,Y ) |= φ, is defined recursively as follows:

1. (X,Y ) |= a if a ∈ X , for any atom a,

2. (X,Y ) 6|= ⊥,

3. (X,Y ) |= ¬φ if Y 6|= φ,4

4. (X,Y ) |= φ ∧ ψ if (X,Y ) |= φ and (X,Y ) |= ψ,

5. (X,Y ) |= φ ∨ ψ if (X,Y ) |= φ or (X,Y ) |= ψ,

6. (X,Y ) |= φ→ ψ if (i) (X,Y ) 6|= φ or (X,Y ) |= ψ, and (ii) Y |= φ→ ψ.

Then, an HT-interpretation (X,Y ) is a model of a theory Γ, denoted (X,Y ) |= Γ, if (X,Y ) |= φ for
every formula φ ∈ Γ.

In particular, (X,Y ) |= ¬a iff a /∈ Y , and (X,Y ) |= r for a rule r of form (1) iff either H(r) ∩X 6= ∅,
or B+(r) 6⊆ Y , or B−(r) ∩ Y 6= ∅; in terms of the GL-reduct, we have (X,Y ) |= P for a program P iff
Y |= P and X |= P Y [41].

A total HT-interpretation (Y, Y ) is an equilibrium model of a theory Γ, if (Y, Y ) |= Γ and for every
HT-interpretation (X,Y ), such that X ⊂ Y , it holds that (X,Y ) 6|= Γ. For further details see, e.g., [30].

Example 9 (cont’d) For the program P = {b ∨ c ← not a; d ← c, not b}, the sets (∅, a), (a, a), (b, b),
(∅, ab), (a, ab), (b, bc), (c, bc), (cd, cd) are some HT-models (X,Y ) of the corresponding theory ΓP .5 The
equilibrium models of P resp. ΓP are (b, b) and (cd, cd).

In the previous example, the program P has the answer sets I1 = {b} and I2 = {c, d}, which amount to
the equilibrium models (b, b) and (cd, cd), respectively. In fact, the answer sets and equilibrium models of a
program always coincide.

Proposition 1 ([29]) For every program P and M ⊆ At(P ), it holds that M ∈ AS(P ) iff (M,M) is an
EQ-model of ΓP .

In particular, as AS(P ) = MM (P ) for any positive program P , we have EQ(P ) = {(M,M) | M ∈
MM (P )} in this case.

We call a logic program incoherent, if it lack answer sets due to cyclic dependency of atoms among each
other by rules through negation; that is, no answer set (equivalently, no equilibrium model) exists even if all
constraints are dismissed from the program.

4That is, Y satisfies ¬φ classically; equivalently, (X,Y ) |= φ→ ⊥.
5We write (as common) sets {a1, a2, . . . , an} as juxtaposition a1a2 · · · an of their elements.
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Example 10 Reconsider Russell’s paradox; the HT-models of the respective program are (∅, a) and (a, a),
where a stands for shaves(joe, joe); the single total HT-model is (a, a), which however is not an equilibrium
model. Similarly, the program P = {a← b; b← not a} has the HT-models (∅, a), (∅, ab), (a, a), (a, ab),
and (ab, ab); likewise, the total HT-models (a, a) and (ab, ab) are not equilibrium models.

We next recall the semi-stable model semantics which deals with such incoherence.

2.3 Semi-Stable Models

Inoue and Sakama [38] introduced semi-stable models as an extension of paraconsistent answer set semantics
(called PAS semantics, respectively p-stable models by them) for extended disjunctive logic programs. Their
aim was to provide a framework which is paraconsistent for incoherence, i.e., in situations where stability
fails due to cyclic dependencies of a literal from its default negation.

We consider an extended signature Σκ = Σ∪ {Ka | a ∈ Σ}. Intuitively, Ka can be read as a is believed
to hold. Semantically, we resort to subsets of Σκ as interpretations Iκ and the truth values false ⊥,6 believed
true bt, and true t, where ⊥ � bt � t. The truth value assigned by Iκ to a propositional variable a is
defined by

Iκ(a) =


t if a ∈ Iκ,
bt if Ka ∈ Iκ and a 6∈ Iκ,
⊥ otherwise.

The semi-stable models of a program P are obtained from its epistemic transformation P κ.

Definition 1 (Epistemic Transformation P κ [38]) Let P be a disjunctive program. Then its epistemic
transformation is defined as the positive disjunctive program P κ obtained from P by replacing each rule r of
the form (1) in P , such that B−(r) 6= ∅, with:

λr,1 ∨ . . . ∨ λr,l ∨Kc1 ∨ . . . ∨Kcn ← b1, . . . , bm, (4)

ai ← λr,i, (5)

← λr,i, cj , (6)

λr,i ← ai, λr,k, (7)

for 1 ≤ i, k ≤ l and 1 ≤ j ≤ n, where the λr,i, λr,k are fresh atoms.

Note that for any program P , its epistemic transformation P κ is positive. Models of P κ are defined in terms
of a fixpoint operator in [38], with the property that for positive programs, according to Theorem 2.9, minimal
fixpoints coincide with minimal models of the program. Therefore, for any program P , minimal fixpoints of
P κ coincide with answer sets of P κ.

Semi-stable models are then defined as maximal canonical interpretations among the minimal fixpoints
(answer sets) ofP κ as follows. For every interpretation Iκ over Σ′ ⊇ Σκ, let gap(Iκ) = {Ka ∈ Iκ | a 6∈ Iκ}
denote the atoms believed true but not assigned true.

Definition 2 (maximal canonical) Given a set S of interpretations over Σ′, an interpretation Iκ ∈ S is
maximal canonical in S, if no Jκ ∈ S exists such that gap(Iκ) ⊃ gap(Jκ). By mc(S) we denote the set of
maximal canonical interpretations in S.

Then we can equivalently paraphrase the definition of semi-stable models in [38] as follows.
6In [38] ⊥ is called ‘undefined’, as it should be if strong negation is considered as well.
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Definition 3 (semi-stable models) Let P be a program over Σ. An interpretation Iκ over Σκ is a semi-
stable model of P , if Iκ = S ∩Σκ for some maximal canonical answer set S of P κ. The set of all semi-stable
models of P is denoted by SST (P ), i.e., SST (P ) = {S ∩ Σκ | S ∈ mc(AS(P κ))}.

Example 11 Reconsider P = {a ← not a}, where a stands for shaves(joe, joe). Then P κ = {λ1 ∨
Ka ← ; a ← λ1; ← a, λ1; λ1 ← a, λ1}, which has the single answer M = {Ka}; hence, {Ka} is the
single semi-stable model of P .

Example 12 Consider the simple stratified program P = {b ← not a}. Its epistemic transformation is
P κ = {λ1 ∨ Ka ← ; b ← λ1; ← a, λ1; λ1 ← b, λ1}, which has the answers sets M1 = {Ka} and
M2 = {λ1, b}; as gap(M1) = {a} and gap(M2) = ∅, among them M2 is maximal canonical, and hence
M2 ∩ Σκ = {b} is the single semi-stable model of P . This is in fact also the unique answer set of P .

For a study of the semi-stable model semantics, we refer to [38]; notably,

Proposition 2 ([38]) The SST -models semantics, given by SST (P ) for arbitrary programs P , satisfies
properties (D1)-(D3).

3 Semantic Characterization of Semi-Stable Models

As opposed to its transformational definition, we aim at a model-theoretic characterization of semi-stable
models in the line of model-theoretic characterizations of the answer set semantics by means of HT.

Example 13 Reconsider P = {a ← not a} in Example 11. The HT-models of P are (∅, {a}) and
({a}, {a}). One might aim characterizing the semi-stable model by (∅, {a}).

However, resorting to HT-interpretations will not uniquely characterize semi-stable models as illustrated
next.

Example 14 Consider the program

P = {a; b; c; d← not a, not b; d← not b, not c}.
It is coherent, with a single answer set {a, b, c}, while SST (P ) = {{a, b, c,Kb}, {a, b, c, Ka,Kc}}. Note
that neither ({a, b, c}, {b}) nor ({a, b, c}, {a, c}) is a HT-interpretation.

Hence, for a 1-to-1 characterization we have to resort to different structures. Sticking to the requirement
that, given a program P over Σ, pairs of two-valued interpretations over Σ should serve as the underlying
semantic structures, we say that a bi-interpretation of a program P over Σ is any pair (I, J) of interpretations
over Σ, and define:

Definition 4 (bi-model) Let φ be a formula over Σ, and let (I, J) be a bi-interpretation over Σ. Then, (I, J)
is a bi-model of φ, denoted (I, J) |=β φ, if

1. (I, J) |=β a if a ∈ I , for any atom a,

2. (I, J) 6|=β ⊥,

3. (I, J) |=β ¬φ if J 6|= φ,

4. (I, J) |=β φ ∧ ψ if (I, J) |=β φ and (I, J) |=β ψ,
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5. (I, J) |=β φ ∨ ψ if (I, J) |=β φ or (I, J) |=β ψ,

6. (I, J) |=β φ→ ψ if (i) (I, J) 6|=β φ, or (ii) (I, J) |=β ψ and I |= φ.

Moreover, (I, J) is a bi-model of a program P , if (I, J) |=β φ, for all φ of the form (3) corresponding to a
rule r ∈ P .

In case of programs, its bi-models can alternatively be characterized by the following condition on its
rules.

Proposition 3 Let r be a rule over Σ, and let (I, J) be a bi-interpretation over Σ. Then, (I, J) |=β r if and
only if B+(r) ⊆ I and J ∩B−(r) = ∅ implies that I ∩H(r) 6= ∅ and I ∩B−(r) = ∅.

To every bi-model of a program P , we associate a corresponding interpretation (I, J)κ over Σκ by
(I, J)κ = I ∪ {Ka | a ∈ J}. Conversely, given an interpretation Iκ over Σκ its associated bi-interpretation
β(Iκ) is given by (Iκ ∩ Σ, {a | Ka ∈ Iκ}).

In order to relate these constructions to models of the epistemic transformation, which builds on additional
atoms of the form λr,i, we construct an interpretation (I, J)κ,P of P κ from a given bi-interpretation (I, J) of
P as:

(I, J)κ,P = (I, J)κ ∪ {λr,i | r ∈ P,B−(r) 6= ∅, ai ∈ I, I |= B(r), J |= B−(r) },

where r is of the form (1).

Proposition 4 Let P be a program over Σ. Then,

(1) if (I, J) is a bi-model of P , then (I, J)κ,P |= P κ;

(2) if M |= P κ then β(M ∩ Σκ) is a bi-model of P .

Based on bi-models, we obtain a 1-to-1 characterization of semi-stable models by imposing suitable
minimality criteria.

Theorem 5 Let P be a program over Σ. Then,

(1) if (I, J) is a bi-model of P such that (i) (I ′, J) 6|=β P , for all I ′ ⊂ I , (ii) (I, J ′) 6|=β P , for all
J ′ ⊂ J , and (iii) there is no bi-model (I ′, J ′) of P that satisfies (i) and gap(I ′, J ′) ⊂ gap(I, J), then
(I, J)κ ∈ SST (P );

(2) if Iκ ∈ SST (P ), then β(Iκ) is a bi-model of P that satisfies (i)-(iii).

Intuitively, Conditions (i) and (ii) filter bi-models that uniquely correspond to (some but not all) answer
sets of P κ: due to minimality every answer set satisfies (i); there may be answer sets of P κ that do not
satisfy (ii), but they are certainly not maximal canonical. Eventually, Condition (iii) ensures that maximal
canonical answer sets are selected. More formally, the proof of this theorem builds on the following
relationship between bi-models of P and answer sets of P κ.

Corollary 6 Let P be a program over Σ. If M ∈ AS(P κ), then β(M ∩ Σκ) satisfies (i). If (I, J) is a
bi-model of P that satisfies (i) and (ii), then there exists M ∈ AS(P κ), such that β(M ∩ Σκ) = (I, J).

For illustration consider the following example.
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Example 15 Let P = {a ← b; b ← not b}. Its bi-models are all pairs (I, J), where I ∈ {∅, {a}, {a, b}}
and J ∈ {{b}, {a, b}}. Condition (i) of Theorem 5 holds for bi-models such that I = ∅, and Condition (ii)
holds only-if J = {b}. Thus, {Kb} is the unique semi-stable model of P .

The examples given so far also exhibit some anomalies of the semi-stable semantics with respect to basic
rationality properties considered in epistemic logics. In particular, knowledge generalization (or necessitation,
resp. modal axiom N) is a basic principle in respective modal logics. For a semi-stable model Iκ, it would
require that

Property N: a ∈ Iκ implies Ka ∈ Iκ, for all a ∈ Σ.

This property does not hold as witnessed by Example 14.
Another basic requirement is the distribution axiom (modal axiom K). Assuming that we belief the rules

of a given program (which might also be seen as the consequence of adopting knowledge generalization) the
distribution property can be paraphrased for a rule of the form (1) as follows:

Property K: If Iκ |= Kb1 ∧ . . . ∧Kbm and Iκ 6|= Kc1 ∨ . . . ∨Kcn, then Iκ |= Ka1 ∨ . . . ∨Kal.

Note that this does not hold for rule a← b in Example 15.

4 Semi-Equilibrium Models

In this section we define and characterize an alternative paracoherent semantics which we call semi-
equilibrium semantics (for reasons which will become clear immediately). The aim for semi-equilibrium
models is to enforce Properties N and K on them. Let us start considering bi-models of a program P , that
satisfy these properties. It turns out that such structures are exactly given by HT-models.

Proposition 7 Let P be a program over Σ. Then,

(1) if (I, J) is a bi-model of P , such that (I, J)κ satisfies Property N and Property K, for all r ∈ P , then
(I, J) is an HT-model of P ;

(2) if (H,T ) is an HT-model of P , then (H,T )κ satisfies Property N and Property K, for all r ∈ P .

In order to define semi-equilibrium models, we follow the basic idea of the semi-stable semantics and
select subset minimal models that are maximal canonical. Let us defineHT κ(P ) = {(H,T )κ | (H,T ) |= P}
and denote by MM (HT κ(P )) its minimal elements with respect to subset inclusion.

Definition 5 (semi-equilibrium models) Let P be a program over Σ. An interpretation Iκ over Σκ is a
semi-equilibrium (SEQ) model of P , if Iκ ∈ mc(MM (HT κ(P ))). The set of semi-equilibrium models of P
is denoted by SEQ(P ).

A model-theoretic characterization for this semantics is obtained as before, replacing bi-models by
HT-models and dropping Condition (ii). Intuitively, Condition (ii) is not needed as it is subsumed by
Condition (iii) (i.e., Condition (ii′) below) if Property N and Condition (i) hold.

To formulate the result, we extend the notion of gap from Σκ-interpretations to HT-interpretations as
follows. For any HT-interpretation (X,Y ), let gap(X,Y ) = Y \X , i.e., gap(X,Y ) = gap(β((X,Y ))).

Theorem 8 Let P be a program over Σ. Then,
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(1) If (H,T ) is an HT-model of P such that (i′) (H ′, T ) 6|= P , for all H ′ ⊂ H , and (ii′) no HT-model
(H ′, T ′) of P exists that satisfies (i′) and gap(H ′, T ′) ⊂ gap(H,T ), then (H,T )κ ∈ SEQ(P );

(2) if Iκ ∈ SEQ(P ), then β(Iκ) is an HT-model of P that satisfies (i′) and (ii′).

We refer to the condition (i′) as h-minimality and to the condition (i′′) as gap-minimality of an HT-model
of a program P .

Like semi-stable models, semi-equilibrium models may be computed as maximal canonical answer sets,
i.e., equilibrium models, of an extension of the epistemic program transformation.

Definition 6 (PHT ) Let P be a program over Σ. Then its epistemic HT-transformation PHT is defined as
the union of P κ with the set of rules:

Ka← a,

Ka1 ∨ . . . ∨Kal ∨Kc1 ∨ . . . ∨Kcn ← Kb1, . . . ,Kbm,

for a ∈ Σ, respectively for every rule r ∈ P of the form (1).

The extensions of the transformation naturally ensure Properties N and K on its models and its maximal
canonical answer sets coincide with semi-equilibrium models.

Theorem 9 Let P be a program over Σ, and let Iκ be an interpretation over Σκ. Then, Iκ ∈ SEQ(P ) if
and only if Iκ ∈ {M ∩ Σκ |M ∈ mc(AS(PHT ))}.

We note at this point that an alternative, less involving encoding of semi-equilibrium models can be found
in Section 8.

The resulting semantics is classically coherent, i.e., fulfills property (D3) from the Introduction.

Proposition 10 Let P be a program over Σ. If P has a model, then it has a semi-equilibrium model.

Another simple property is a 1-to-1 correspondence between answer sets and semi-equilibrium models.

Proposition 11 Let P be a coherent program over Σ. Then,

(1) if Y ∈ AS(P ), then (Y, Y )κ is a semi-equilibrium model of P ;

(2) if Iκ is a semi-equilibrium model of P , then β(Iκ) is an equilibrium model of P , i.e., β(Iκ) is of the
form (Y, Y ) and Y ∈ AS(P ).

From Propositions 10 and 11, we thus obtain that semi-equilibrium models behave similarly as semi-stable
models with respect to the properties (D1)-(D3) in the Introduction.

Proposition 12 The SEQ-models semantics, given by SEQ(P ) for arbitrary programs P , satisfies properties
(D1)-(D3).

Furthermore, an immediate consequence of Proposition 11 is the following property.

Corollary 13 For every positive program P , SEQ(P ) = EQ(P ) = {(M,M) |M ∈ MM (P )}.

For an illustration of the 1-to-1 relationship between answer sets and semi-equilibrium models, let us
reconsider Example 14. Note that this example also gave evidence that semi-stable models do not satisfy
Property N, which is the case for semi-equilibrium models, however.
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Example 16 Consider the coherent program of Example 14. Its unique semi-equilibrium model is {a, b, c,
Ka,Kb,Kc}, which corresponds to the single answer set {a, b, c}; viewed as HT-models, we have β({a, b, c,
Ka,Kb,Kc}) = (abc, abc), which is the equilibrium-model corresponding to the answer set {a, b, c}.

As a consequence of Property K, semi-equilibrium semantics differs from semi-stable semantics not only
with respect to believed consequences.

Example 17 Consider the program P = {a ← b; b ← not b; c ← not a}, which extends the program in
Example 15 with the rule c← not a. The single semi-stable model of P is {c,Kb} (which corresponds to
the bi-model (c, b)), while the single SEQ-model is {Ka,Kb} (which corresponds to the HT-model (∅, ab)).
Thus while c is true under SST -model semantics, it is false under SEQ-model semantics: due to lacking
belief propagation, the CWA assigns a false in the SST -model which in turn causes c to get true; in the
SEQ-model, as a is believed to be true the rule with c in the head is defeated. As there is no other way to
derive c, the CWA assigns it false.

As each SEQ-model Iκ of P is uniquely determined by the HT-model β(Iκ), we shall in the rest of this
article also identify these models and refer to the set {β(Iκ) | Iκ ∈ SEQ(P )} as the SEQ-models of P (and
denote it in abuse of notation by SEQ(P )).

5 Split Semi-Equilibrium Semantics

While the SEQ-semantics has nice properties, it may select models that do not respect modular structure in
the rules. To illustrate this, consider the following example.

Example 18 Suppose we have a program that captures knowledge about friends of a person regarding visits
to a party, where go(X) informally means that X will go:

P =


go(John)← not go(Mark);
go(Peter)← go(John), not go(Bill);
go(Bill)← go(Peter)


Then P has no answer set; its semi-equilibrium models are M1 = (∅, {go(Mark)}), and M2 =

({go(John)}, {go(John), go(Bill)}). Informally, a key difference between M1 and M2 concerns the beliefs
on Mark and John. In M2 Mark does not go, and, consequently, John will go (moreover, Bill is believed to
go, and Peter will not go). In M1, instead, we believe Mark will go, thus John will not go (likewise Peter and
Bill).

None of the two models provides a fully coherent view (on the other hand, the program is incoherent,
having no answer set). Nevertheless, M2 appears preferable over M1, since, according with a layering
(stratification) principle, which is widely agreed in LP, one should prefer go(John) rather than go(Mark), as
there is no way to derive go(Mark) (which does not appear in the head of any rule of the program).

Modularity via rule dependency as in the example above is widely used in problem modeling and logic
programs evaluation; in fact, program decomposition is crucial for efficient answer set computation. For the
program P above, advanced answer set solvers like DLV and clasp immediately set go(Mark) to false, as
go(Mark) does not occur in any rule head. In a customary bottom up computation along program components,
answer sets are gradually extended until the whole program is covered, or incoherence is detected at some
component (in our example for the last two rules). But rather than to abort the computation, we would like to
switch to a paracoherent mode and continue with building semi-equilibrium models, as an approximation of
answer sets.
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To overcome this limitation, we introduce a refined paracoherent semantics, called split semi-equilibrium
semantics. It coincides with the answer sets semantics in case of coherent programs, and selects a subset of
the SEQ-models otherwise. The main results of this section are two model-theoretic characterizations which
identify necessary and sufficient conditions for deciding whether a SEQ-model is selected.

5.1 Split Semi-Equilibrium Models

We now introduce the notion of SEQ-models relative to a splitting set. First given a splitting set S for a
program P and an HT-interpretation (I, J) for bS(P ), we let

PS(I, J) = P \ bS(P ) ∪ {a | a ∈ I} ∪ {← not a | a ∈ J} ∪ {← a | a ∈ S \ J}. (8)

Informally, the bottom part of P w.r.t. S is replaced with rules and constraints which fix in any EQ-model of
the remainder (= tS(P )) the values of the atoms in S to (I, J).

Definition 7 (Semi-equilibrium models relative to a splitting set) Let S be a splitting set of a program P .
Then the semi-equilibrium models of P relative to S are defined as

SEQS(P ) = mc
( ⋃

(I,J)∈SEQ(bS(P ))

SEQ(PS(I, J))
)
. (9)

Example 19 Reconsider the program in Example 18, P = {b← not a; d← b, not c; c← d}, where a, b,
and c, d stand for go(Mark), go(John), go(Bill), and go(Peter), respectively. We have SEQ(P ) = { (∅, a),
(b, bc) }, where (b, bc) is more appealing than (∅, a) because a is not derivable, as no rule has a in the
head. Moreover, intuitively, P1 = {b ← not a} is a lower (coherent) part feeding into the upper part
P2 = {d ← b, not c; c ← d}. This is formally captured by the splitting set S = {a, b}, which yields
bS(P ) = P1 and SEQ(bS(P )) = {(b, b)}. Hence, PS(b, b) = {d ← b, not c; c ← d; b; ← a} and
SEQS(P ) = SEQ(PS(b, b)) = {(b, bc)}.

In what follows, we establish a semantic characterization of the SEQ-models relative to a splitting set as
those SEQ-models of the program that extend SEQ-models of the bottom part.
Notation. For any HT-model (X,Y ) and set S of atoms, we define the restriction of (X,Y ) to S as
(X,Y )|S = (X ∩ S, Y ∩ S).

Proposition 14 Let S be a splitting set of a programP . If (X,Y )∈SEQS(P ), then (X,Y )|S ∈ SEQ(bS(P )).

The following result shows that each semi-equilibrium model relative to a given splitting set is always a
semi-equilibrium model of the program.

Proposition 15 (Soundness) Let S be a splitting set of a program P . If (X,Y )∈SEQS(P ), then (X,Y ) ∈
SEQ(P ).

This result is proven by establishing first that HT-models of the program PS(I, J) are HT-models of the
program P , and then the h-minimality and gap-minimality of (X,Y ). More precisely, the first step uses the
following lemma:

Lemma 16 Let S be a splitting set of a program P and let (I, J) ∈ SEQ(bS(P )). If (X,Y ) is an HT-model
of PS(I, J), then (X,Y ) is an HT-model of P .
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However, the converse of Proposition 15 does not hold in general; in fact if we consider the program of Ex-
ample 19 and the splitting set S = {a, b} we have SEQS(P ) = {(b, bc)}, while SEQ(P ) = {(∅, a), (b, bc)}.
Clearly, SEQS(P ) depends on the choice of S; in fact if we choose S = ∅, then SEQ∅(P ) = SEQ(P ).

Moreover for Proposition 15 to hold, the selection of maximal canonical HT-models is necessary.

Example 20 For P = {a ← not b; b ← not a; c ← b, not c} and the splitting set S = {a, b}, we
have SEQ(bS(P )) = {(a, a), (b, b)}; hence SEQ(PS(a, a)) ∪ SEQ(PS(b, b)) = {(a, a), (b, bc)}, while
SEQ(P ) = {(a, a)}.

So far, we have presented two properties of an HT-model that are necessary conditions to qualify as
a SEQ-model relative to a given splitting set. The natural question is whether these conditions are also
sufficient; this is indeed the case.

Proposition 17 (Completeness) Let S be a splitting set of a program P . If (X,Y ) ∈ SEQ(P ) and
(X,Y )|S ∈ SEQ(bS(P )), then (X,Y ) ∈ SEQS(P ).

Putting the results above together, we obtain the following semantic characterization of SEQ-models
relative to a splitting set.

Theorem 18 (SEQ-model characterization) Let S be a splitting set of a program P . Then (X,Y ) ∈
SEQS(P ) iff (X,Y ) ∈ SEQ(P ) and (X,Y )|S ∈ SEQ(bS(P )).

Proof. The only-if direction follows from Propositions 14 and 15; the if direction holds by Proposition 17. 2

Like the ordinary SEQ-models, also the split SEQ-models coincide with the answer sets of a program if
some answer set exists.

Corollary 19 Let P be a program such that EQ(P ) 6= ∅. Then for every splitting set S of P , SEQS(P ) =
EQ(P ); in particular, if P is positive, then SEQS(P ) = {(M,M) |M ∈ MM (P )}.

We observe that a program which has some model does not necessarily have split semi-equilibrium
models (but always semi-equilibrium models).

Example 21 Let us consider P = {← b; b ← not a} and the splitting set S = {a}. Then we obtain
SEQ(bS(P )) = {(∅, ∅)} and so SEQS(P ) = ∅. However (a, a) and (∅, a) are HT-models of P .

Note that occurrence of a constraint in the previous example is not accidental; in fact,

Proposition 20 For every constraint-free program P and splitting set S of P , it holds that SEQ(PS) 6= ∅.

In summary, the split SEQ-models have the following profile with respect to the properties (D1)-(D3).

Proposition 21 The split SEQ-models semantics of a program P relative to a splitting set S of P , given by
SEQS(P ), satisfies properties (D1)-(D2), and if P is constraint-free, also (D3).

5.2 Split Sequence Semi-Equilibrium Models

Now we generalize the use of splitting sets to SEQ-models of a program via splitting sequences. To this end,
we naturally reduce a splitting sequence to its head and its remainder and apply splitting sets recursively.
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Definition 8 (Semi-equilibrium models relative to a splitting sequence) Let S = (S1, . . . , Sn), n ≥ 1,
be a splitting sequence for a program P . then the semi-equilibrium models of P relative to S are given by

SEQS(P ) = mc
( ⋃

(I,J)∈SEQ(bS1
(P ))

SEQS′(PS1(I, J))
)
, (10)

where S′ = (S2, ..., Sn) and SEQ()(P ) = SEQ(P ).

The SEQ-models relative to a splitting sequence can be characterized similarly as those relative to a
splitting set, namely as SEQ-models of the program that remain by filtering the SEQ-models along the
splitting sequence.

To ease presentation, for a given program P and splitting sequence S = (S1, ..., Sn), we let P0 = P and
Pk = (Pk−1)

Sk(Ik, Jk), where (Ik, Jk) ∈ SEQ(bSk
(Pk−1)), k = 1, ..., n; that is, Pk is not uniquely defined

but ranges over a set of programs.
The main result of this section is now as follows.

Theorem 22 Let S= (S1, ..., Sn) be a splitting sequence of a program P . Then (X,Y ) ∈ SEQS(P ) iff
(X,Y ) ∈ SEQ(P ) and (X,Y )|Sk

∈ SEQ(bSk
(Pk−1)), for some Pk, for k = 1, ..., n.

The proof proceeds by induction using Theorem 18. Corollary 19 off Theorem 18 also generalizes to
splitting sequences.

Corollary 23 Let P be a program such that EQ(P ) 6= ∅. Then for every splitting sequence S of P ,
SEQS(P ) = EQ(P ); in particular, if P is positive, then SEQS(P ) = {(M,M) |M ∈ MM (P )}.

Proof. [Sketch] Using Theorem 22, this can be shown by induction, using Corollaries 13 and 19. 2

Another consequence of Theorem 22 is that, written in other form, the split sequence SEQ-models of a
program can be bottom up constructed, taking into account that at each stage only the respective rules (i.e.,
bSj+1(P ) \ bSj (P )) need to be considered. More formally,

Corollary 24 For every splitting sequence S = (S1, . . . , Sn) of a program P , it holds that SEQS(P ) = Sn,
where for j = n, . . . , 1 we have

Sj = mc(
⋃

(X,Y )∈Sj−1
SEQ(Qj(X,Y ))),

where Qj = bSj+1(P ) \ bSj (P ) with bSn+1(P ) = P and S0 = SEQ(bS1(P )).

This form is in fact a suitable starting point for computation; we refer to Section 6.1 for further discussion.
Regarding the existence of split sequence SEQ-models, we obtain a generalization of Proposition 20.

Proposition 25 For every splitting sequence S of a constraint-free program P , it holds that SEQ(PS) 6= ∅.

Proof. [Sketch] This can be shown by an inductive argument, along the lines of the proof of Proposition 20,
using Propositions 10 and 20. 2

In particular, we obtain from this for stratified programs the following result.

Corollary 26 For every splitting sequence S of a stratified program P that is constraint-free, it holds that
SEQS(P ) = EQ(P ).

In conclusion, we obtain the following profile of split sequence SEQ-models with respect to the properties
(D1)-(D3).

Proposition 27 The split sequence SEQ-models semantics of a program P relative to a splitting sequence S
of P , given by SEQS(P ), satisfies properties (D1)-(D2), and if P is constraint-free, also (D3).
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5.2.1 Infinite splitting sequences

As mentioned earlier, we concentrate in this article on finite splitting sequences; however split SEQ-models
can be easily extended to infinite splitting sequences S = (S1, S2, . . . , Si, . . .). To this end, we can define
the split-SEQ models of P relative to a splitting sequence S by SEQS(P ) =

⋂∞
i≥1 SEQ

S[1..i](P ), where
S[1..i] = (S1, . . . , Si) is the initial segment of S of length i. Indeed, any extension of the finite sequence
S[1..i] by some Si+1 may lead to the loss of SEQ-models; on the other hand, after passing Si, no new model
candidates relative to Si will be encountered.

6 Canonical Semi-Equilibrium Models

The split semi-equilibrium semantics depends on the choice of the particular splitting sequence, which is
not much desirable. We thus consider a way to obtain a refined split SEQ-semantics that is independent of a
particular splitting sequence, but imposes conditions on sequences that come naturally with the program and
can be easily tested.

Attractive for this purpose are the strongly connected components (SCCs) of a given program, which
are at the heart of bottom up evaluation algorithms in ASP systems. In absence of constraints, we get the
desired independence of a particular splitting sequence, such that we can then talk about the SCC-models of a
program. Allowing for constraints will need a slight extension.

6.1 SCC-split Sequences and Models

We start with recalling further notions. The supergraph of a program P is the graph SG(P ) = 〈VSG , ESG〉,
where VSG = SCC(P ) and ESG = {(C,C ′) | C 6= C ′ ∈ SCC(P ), ∃a ∈ C,∃b ∈ C ′, (a, b) ∈ EDG}. Note
that SG(P ) is a directed acyclic graph (dag); recall that a topological ordering of a dag G = 〈V,E〉 is an
ordering v1, v2, ..., vn of its vertices, denoted ≤, such that for every (vi, vj) ∈ E we have i > j. Such an
ordering always exists, and the set O(G) of all topological orderings of G is nonempty. Any such ordering of
SG(P ) naturally induces a splitting sequence as follows.

Definition 9 Let P be a program and let ≤ = (C1, ..., Cn) be a topological ordering of SG(P ). Then the
splitting sequence induced by ≤ is S≤ = (S1, ..., Sn), where S1 = C1 and Sj = Sj−1 ∪ Cj , for j = 2, ..., n.

We call any such S≤ a SCC-splitting sequence; note that S≤ is indeed a splitting sequence of P .
We now show that for constraint-free programs, the split SEQ-models relative to SCC-split sequence are

independent of the concrete such sequence; in fact, we establish this result for programs in which certain
constraints do not occur.

Definition 10 A constraint r in P is a cross-constraint, if r intersects distinct SCCs Ci, Cj in SCC(P ) that
are incomparable in SG(P ), i.e., Ci ∩At(r) 6= ∅, Cj ∩At(r) 6= ∅, and SG(P ) has topological orderings
of the forms (. . . , Ci, . . . , Cj , . . .) and (. . . , Cj , . . . , Ci, . . .).

For example, the constraint← b in the program P of Example 21 is trivially not a cross-constraint, and
likewise an additional constraint← a, b. However, an additional constraint← b, c would be a cross-constraint.
We obtain the following result.

Theorem 28 Let P be a program without cross-constraints. Then for every ≤,≤′∈ O(SG(P )), we have
SEQS≤(P ) = SEQS≤′ (P ).
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Corollary 29 For every constraint-free program P , the SEQ-models of P relative to an SCC-split sequence
S are independent of the choice of S.

The proof of Theorem 28 is technically involving as it needs to be shown that changes in the ordering
of the SCCs do not matter in the end. It uses a series of lemmas which assert certain properties of semi-
equilibrium models (Ik, Jk) of the programs Pk that emerge in the bottom up characterization of Theorem 22,
and independence properties in certain cases; in particular, where for any setsM andM′ of HT-models,
their product is given byM×M′ = {(X ∪X ′, Y ∪ Y ′) | (X,Y ) ∈M, (X ′, Y ′) ∈M′}:

Proposition 30 Let P be a program in which each constraint r fulfills either At(r) ⊆ S or At(r) ⊆
At(P ) \ S. If S ⊆ At(P ) is such that both S and At(P ) \ S are splitting sets of P , then

SEQ(P ) = SEQ(bS(P ))× SEQ(tS(P )).

Theorem 28 is an analog of the Stratification Theorem [3, 35] which states that the perfect (stratified) model
of a logic program relative to a stratification is independent of the concrete stratification, and thus one can
simply refer to the perfect model of a stratified program; similarly, we thus can define the strongly connected
components models of a program as follows.

Definition 11 (SCC-models) For every program P without cross-constraints, the SCC-models of P are
given as M SCC(P ) = SEQS≤(P ) for an arbitrary topological ordering ≤ of SG(P ).

Example 22 Consider the program

P =

{
← a, d; a← c, not a; a← not b; b← not e; b← f ;
c← not d; c← g, not h; f ← b, not f ; g ← h; h← c, g

}
.

Its SCCs are C1 = {a}, C2 = {b, f}, C3 = {c, g, h}, C4 = {d} and C5 = {e}; as a depends on d, the
single constraint← a, d is not a cross-constraint. For the ordering ≤ = (C4, C5, C3, C2, C1), we obtain that

SEQS≤(P ) = SEQ(S2,S3,S4,S5)(PS1(∅, ∅)) = SEQ(S3,S4,S5)(PS2
1 (∅, ∅))

= SEQ(S4,S5)(PS3
2 (c, c)) = SEQ(S5)(PS4

3 (bc, bcf)) = {(bc, abcf)};

hence M SCC(P ) = {(bc, abcf)}. For ≤′= (C5, C2, C4, C3, C1), we obtain SEQS≤′ (P ) = {(bc, abcf)}, in
line with Theorem 28. Note that SEQ(P ) = {(bc, abcf), (b, bdf), (ac, ace)}.

Regarding the properties (D1)-(D3) of a paracoherent semantics in the Introduction, we obtain from
Proposition 27 immediately

Corollary 31 The SCC-models semantics, given by M SCC(P ) for programs P without cross-constraints,
satisfies properties (D1)-(D2), and it satisfies (D3) for programs without constraints.

As for the properties of SCC-models, we focus here on a particular aspect that is important with respect
to an envisaged exploitation for paracoherent answer set construction; computational aspects are considered
in Section 7.
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6.1.1 Modularity of SCC-models

In the definition of split SEQ-models, we made use of splitting sets as a major tool for modular computation
of equilibrium models (answer sets) of a logic program. Indeed, for any splitting set S of P , as follows from
[24] we have that

EQ(P ) =
⋃

(X,X)∈EQ(bS(P ))

EQ(tS(P ) ∪ {a | a ∈ X} ∪ {← a | a ∈ S \X}). (11)

Note the similarity to the equation in (9) which we used to define seq-models of a program relative to a
splitting set; the major difference is that we use the mc(·) operator to single out smallest gaps at a global
level. And, in general for different S we shall obtain different SEQ-models from (9). However, if we confine
to SCC-models, then an analog to (11) and its generalization to splitting sequences holds.

That is, if we replace in Equation (10) SEQ, SEQS , and SEQS′ all by MSCC , then the resulting equation
hold.

Theorem 32 Let S be a splitting set of a program P without cross-constraints. Then

M SCC(P ) = mc
( ⋃

(I,J)∈MSCC(bS(P ))

M SCC(PS(I, J))
)
. (12)

Thanks to this result, we can compute the SCC-models of a given program modularly bottom up along an
arbitrary splitting sequence (using always M SCC); in particular, if an algorithm has processed a bottom part
bS(P ) of a program P and found equilibrium models (answer sets) for it, and it encounters that an extension
of these equilibrium models using (11) does not yield any answer set, then it can switch to a “paracoherent
mode” and apply (32); as MSCC(bS(P )) = EQ(bS(P )), we obtain the same result as if we would compute
the SCC-models of P from scratch. That is, no backtracking or restarting of the computation is necessary.

6.2 MJC-split Sequences and Models

Unfortunately, Theorem 28 fails if we allow arbitrary constraints in P . This is shown by the following simple
example.

Example 23 The program P = { b; ← b, not a } has the SCCs {a} and {b}; hence O(SG(P )) = {({a},
{b}), ({b}, {a})}. However, the respective semi-equilibrium models are different: SEQ({a},{a,b})(P ) = ∅
and SEQ({b},{a,b})(P ) = {(b, ba)}. As the constraint← b, not a in P is a cross-constraint that intersects
both SCCs, the order in which these incomparable components appear in a splitting sequence matters.

To deal with this situation, different ways are possible. The first one is to exclude constraints (or less
restrictive, cross-constraints), and resort instead to the usage of rules which create unstable negation; that is

← Body (13)

is replaced with
f ← Body , notf, (14)

where f is a fresh atom. Indeed, on some (early) implementations of answer set solvers constraints have been
provided in this way. The SEQ-model semantics is able to distinguish between (13) and (14); this can be
exploited to use (14) as a soft constraint that may intuitively be violated if needed to achieve an EQ-model
resp. answer set; indeed, this rule can always be satisfied by considering f as believed true.
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Another possibility is to remedy situations in which constraints are not embedded in SCCs. To this
end, we consider merging of SCCs in such a way that independence of concrete topological orderings is
preserved and, furthermore, merging is performed conservatively, that is only if it is deemed necessary. This is
embodied by the maximal joinable components of a program, which lead to so calledMJC-split sequences
and models. Informally, relevant SCCs that are unordered (thus unproblematic in evaluation) are merged if
they intersect with a constraint.

We start with introducing the notions of related pairs and joinable pairs of SCCs. We call a pair (K1,K2)
of SCCs of P a related pair, if either K1 = K2 or some constraint r ∈ P intersects both K1 and K2, i.e.,
At(r) ∩K1 6= ∅ and At(r) ∩K2 6= ∅. By C(K1,K2)(P ) we denote the set of all such constraints r.

Definition 12 A related pair (K1,K2) is a joinable pair, if K1 = K2 or some ordering (C1, . . . , Cn) in
O(SG(P )) exists such that (i) K1 = Cs and K2 = Cs+1 for some 1 ≤ s < n, (ii) (K2,K1) /∈ ESG and
(iii) some r ∈ C(K1,K2)(P ) exists such that At(r) ⊆ C1 ∪ ... ∪ Cs+1. By JP(P ) we denote the set of all
joinable pairs of P .

Intuitively item (i) states that in some topological ordering K1 immediately precedes K2; item (ii) states
that no atom in K2 directly depends on an atom from K1. If this does not hold, joining K1 and K2 to achieve
independence is not necessary as their ordering is fixed. Finally item (iii) requires that some constraint must
access the two SCCs (which thus must be a cross-constraint) and appear in the evaluation in the bottom of the
program computed so far.

Example 24 For P = {← b, not a; ← b, not c; d ← not a; c ← not e; b ← c}, we have SCC(P ) =
{{a}, {b}, {c}, {d}, {e}}. We observe that ({c}, {b}) is a related, but not a joinable pair, because ({c}, {b})
satisfies conditions (i) and (iii), but not (ii). On the other hand, ({a}, {b}) is a joinable pair.

We now extend joinability from pairs to any number of SCCs.

Definition 13 Let P be a program. Then K1, ...,Km ∈ SCC(P ) are joinable, if m = 2 and some K ∈
SCC(P ) exists such that (K1,K), (K,K2) ∈ JP(P ), or otherwise Ki,Kj are joinable for each i, j =
1, ...,m. We let JC (P ) = {

⋃m
i=1Ki | K1, ...,Km ∈ SCC(P ) are joinable} and call

MJC(P ) = {J ∈ JC (P ) | ∀J ′ ∈ JC (P ) : J 6⊂ J ′}

the set of all maximal joined components (MJCs) of P .

Note that (K1,K2) ∈ JP(P ) implies that K1 and K2 are joinable (choose K = K1).

Example 25 (cont’d) In Example 24, ({a}, {b}) is the only nontrivial joinable pair; henceMJC(P ) =
{{a, b}, {c}, {d}, {e}}.

As easily seen,MJC(P ) is a partitioning of At(P ) that results from merging SCCs. We define the
MJC graph of P as JG(P ) = 〈VJG , EJG〉, where VJG = MJC(P ) and EJG = {(J, J ′) | J 6= J ′ ∈
MJC(P ),∃a ∈ J,∃b ∈ J ′, (a, b) ∈ EDG}. Note that JG(P ) is like SG(P ) a directed acyclic graph, and
hence admits a topological ordering; we denote by O(JG(P )) the set of all such orderings. We thus define

Definition 14 Let P be a program and ≤ = (J1, ..., Jm) be a topological ordering of JG(P ). Then
the splitting sequence induced by ≤ is S≤ = (S1, ..., Sm), where S1 = J1 and Sk = Sk−1 ∪ Jk, for
k = 2, . . . ,m.

The sequence S≤ is again indeed a splitting sequence, which we call aMJC-splitting sequence. We
obtain a result analogous to Theorem 28, but in presence of constraints.
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Theorem 33 Let P be a program. For every ≤,≤′∈ O(JG(P )), we have SEQS≤(P ) = SEQS≤′ (P ).

The proof of this result is similar to the one of Theorem 28, but uses different lemmas.

Similarly as SCC-models, we thus can define theMJC-models of a program.

Definition 15 (MJC-models) For any program P , theMJC-models of P are given as MMJC(P ) =
SEQS≤(P ) for an arbitrary topological ordering ≤ of JG(P ).

Example 26 (cont’d) Reconsider P in Example 24. Then for the ordering ≤= ({a}, {d}, {e}, {c}, {b}) we
obtain SEQS≤(P ) = ∅, while for ≤′= ({e}, {c}, {b}, {a}, {d}) we obtain SEQS≤′ (P ) = {(bc, abc)}. On
the other hand, JG(P ) has the single topological ordering ≤= ({e}, {c}, {a, b}, {d}), and SEQS≤(P ) =
{(bc, abc)}; hence MMJC(P ) = {(bc, abc)}. Note that SEQ(P ) = {(bc, abc), (d, de)}.

The problem in Section 6.2 disappears when we use the MJCs. The program P = {← b, not a; b} there
has the single MJC J = {a, b}, since the two SCCs {a} and {b} are related through the constraint← b, not a
and thus joinable. As desired, we get (b, ab) as the (single)MJC-model of P .

Note that trivially, theMJC- and the SCC-semantics coincide for constraint-free programs (in fact, also
in absence of cross-constraints). As for the properties (D1)–(D3), again from Proposition 27 we obtain:

Corollary 34 TheMJC-models semantics, given by MMJC(P ) for any program P , satisfies (D1)-(D2),
and if P is constraint-free, also (D3).

Program coherence (D3) is not ensured byMJC-models, due to lean component merging that fully
preserves dependencies. To obtain a SEQ-model, blurring strict dependencies can be necessary, where two
aspects need to taken into account.

(A1) Inconsistency may still emerge from cross-constraints.

Example 27 Consider the program P = {← b, not a; b; b← a}. It has the SCCs {a} and {b}; as they are
not joinable,MJC(P ) = {{b}, {a}}. The singleMJC-splitting sequence is ({a}, {a, b}), which however
does not admit a split SEQ-model; consequently, P has noMJC model.

This can be remedied by suitably merging components that intersect the same constraint.
(A2) A second, orthogonal aspect is dependence.

Example 28 The program P = { ← b; b← not a } has noMJC-model, as theMJC-splitting sequence
S = ({a}, {a, b}) admits no split SEQ-model; the culprit is a, which does not occur in the constraint.

Clearly, the problem extends to dependence via an (arbitrarily long) chain of rules; e.g. change in
Example 28 the rule b ← not a to b ← c1, c1 ← c2, . . . , cn−1 ← cn, cn ← not a. Again, this can be
remedied by merging components. Many merging policies to ensure (D3) are conceivable; however, such a
policy should ideally not dismiss structure unless needed, and it should be efficiently computable; we defer a
discussion to Section 8, as the complexity results in the next section will provide useful insight for it.

6.2.1 Modularity ofMJC-models

A naive generalization of the modularity property of SCC-models in Theorem 32 fails, as it does not hold
for arbitrary splitting sets. To wit, for P = {b; ← b, not a} and the splitting set S = {a}, the modular
computation (similar as in the right hand side of (12)) yields no models, while MMJC(P ) = {(b, ba)}.
However, if we properly restrict S, then the generalization holds.
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Theorem 35 Let S be a splitting set of a program P such that S =
⋃
M for someM⊆MJC(P ). Then

MMJC(P ) = mc
( ⋃

(I,J)∈MMJC(bS(P ))

MMJC(PS(I, J))
)
. (15)

Thus, the same evaluation strategy as for SCC-models can be applied.

7 Complexity and Computation

In this section, we turn to the computational complexity of the paracoherent model semantics that we have
considered in the previous sections. In this, we deal with the SEQ-model and the split SEQ-model semantics
in detail, while we treat the SST -model semantics more in passing; the reason is that the complexity of
SST -model semantics has been elucidated in more detail in [15], while the SEQ-model semantics has been
only briefly considered there.

Regarding SEQ-model semantics, we study the following major reasoning tasks:

(MCH) Given a program P and an HT-interpretation (X,Y ), decide whether (X,Y ) |=SEQ P .

(INF) Given a program P , an atom a and v ∈ {t, f ,bt}, decide whether a is a brave [resp. cautious]
SEQ-consequence of P with value v, denoted P |=b,v

SEQ a [resp. P |=c,v
SEQ a], i.e., a has in some (every)

(X,Y ) ∈ SEQ(P ) value v.

(COH) Given a program P , decide whether SEQ(P ) 6= ∅.

The generalizations of these problems to split SEQ-semantics, where in addition a split sequence S
is part of the input and SEQ is replaced with SEQS , are denoted with MCH-S, INF-S, and COH-S,
respectively. We consider all problems for several classes of programs, viz. normal, disjunctive, stratified, and
headcycle-free programs7 and the split SEQ-models problems also for SCC- andMJC-splitting sequences
S,

The attentive reader might ask why positive programs are not considered here; they are of less interest,
as the (split sequence) SEQ-models coincide with the minimal models of P (see Corollaries 13 and 23).
Furthermore, we note that hcf-programs are under SEQ-semantics sensitive to body shifts; e.g., P =
{a ∨ b; a ← not a; b ← not b} has the SEQ-models (a, ab) and (b, ab), while its shift P→ = {a ←
not b; b← not a; a← not a; b← not b} has the single SEQ-model (∅, ab). Thus results for hcf-programs
do not immediately carry over to normal program.

7.1 Overview of complexity results

Our complexity results are summarized in Tables 1 and 2. They show that SEQ-model semantics is with
respect to model checking (MCH) and inference (INF) one level higher up in the polynomial hierarchy than
the EQ-model (i.e., answer set) semantics; this is not surprising as the characterization of a SEQ-model in
Theorem 8 involves besides h-minimality also gap-minimality, while the EQ-model definition involves only
h-minimality. As gap-minimality is a global property and has to be checked across all h-minimal HT-models
of a program, intuitively an (additional) quantifier is needed to express that no h-minimal HT-model with
smaller gap exists; in particular, this causes SEQ-model checking for normal programs to become intractable.

7Note that [15] did not consider stratified and hcf-programs.
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The additional quantifier is then also needed for brave and cautious reasoning, where we need to find a
suitable SEQ-model that establishes respectively refutes the query atom, with one exception (this will be
discussed below). For the coherence problem, however, the complexity is different compared to the EQ-
models semantics as it resorts to classical coherence, and thus to SAT; for some programs it is lower (e.g., for
programs without constraints, where EQ-model existence is NP-complete resp. Σp

2-complete, while COH
is polynomial), while for others it is higher (e.g., for normal stratified programs with constraints COH is
NP-complete, while EQ-model existence is polynomial).

The results in Table 2 show that split SEQ-models have the same complexity as SEQ-models (i.e.,
structural information does not affect complexity) except on Problem COH, which is harder. Problems MCH
and INF do not become harder, as MCH reduces to polynomially many MCH instances without splitting; the
hardness results for arbitrary splitting sequences are inherited from respective results without splitting.

The reason for the complexity increase of COH is that coherence (D3) no longer holds for split SEQ-
model semantics. In particular, this means that imposing a structural condition on building SEQ-models
along SCCs may eliminate such models. The increase in complexity has a further important implication.
Namely, that under usual complexity hypotheses, no polynomial-time method µ exists that associates with P
a splitting sequence S = µ(P ), using a polynomial-time checkable criterion on P , such that (i) µ respects
structure and does not become trivial, i.e., µ(P ) 6= (At(P )) if SEQS(P ) 6= ∅ for some S 6= (At(P )), and
(ii) µ preserves coherence, i.e., SEQ(P ) 6= ∅ implies SEQS(P ) 6= ∅. This negative result holds even if the
method µ is allowed to be nondeterministic, i.e., can for example “guess” a suitable splitting sequence S for
P . In other words, the price for ensuring coherence of a splitting sequence with tractable (or NP) effort is to
merge sometimes more components than necessary.

For SCC andMJC splitting sequences, we obtain analogous results; informally, the problems do not get
easier as splitting (which is a purely syntactic notion) can be blocked by irrelevant rules.

7.1.1 Semi-stable models

For semi-stable models, similar results hold as for SEQ-models in Table 1. The reason is that model checking
for semi-stable models amounts, by the characterization of Theorem 5, to a test that is similar to the one for
SEQ-models according to Theorem 8: testing (I, J) |=β P is like testing (I, J) |= P feasible in polynomial
time, and the conditions (i) and (ii) are analog to the conditions (i′) and (ii′). Similar arguments as for
SEQ-models establish then the membership results for SST -models. The matching hardness results are
derived, however, using different reductions, which can be found in [15]. Noticeably, the proofs there
establish hardness also under the restrictions to hcf, stratified normal, and disjunctive stratified programs;
for hcf-programs, membership of model checking in coNP follows from the fact that deciding item (i) in
Theorem 5 is feasible in polynomial time: as easily seen, this test amounts to deciding whether I ∈ MM (P J);
as P J is hcf and minimal model checking for hcf programs is polynomial [7], the tractability follows.

7.2 Derivation of the results

In the following, we formally state and derive the results in Tables 1 and 2. Rather than going into tiring
technical details, we shall confine in the membership parts to the essential points and describe in the hardness
parts the constructed programs without proving the correcntess in each case, which is routine.

We exploit that in most cases the split-variant Π-S of a problem Π features its full complexity already for
the trivial split sequence S = (At(P )); thus Π-S and Π have the same complexity.

Theorem 36 Given a program P , a splitting sequence S and an HT-interpretation (X,Y ) recognizing if
(X,Y ) ∈ SEQS(P ) is
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Table 1: Complexity of SEQ-models (completeness results). The same results hold for SST models.

Problem / Program P : normal, strat. nor-
mal, headcycle-
free

disj. strat-
ified,
disjunctive

(MCH) Model checking: (X,Y )∈SEQ(P )? coNP-c Πp
2-c

(INF) Brave reasoning: P |=b,v
SEQ a? Σp

2-c Σp
3-c

Cautious reasoning: P |=c,v
SEQ a? Πp

2-c Πp
3-c

(COH) Existence: SEQ(P ) 6= ∅? NP-c NP-c

Table 2: Complexity of split SEQ-models (completeness results). The same results hold for canonical models
(SCC-,MJC-split sequences S).

Problem / Program P : normal, strat. nor-
mal, headcycle-
free

disj. strat-
ified,
disjunctive

(MCH-S) Model checking: (X,Y )∈SEQS(P )? coNP-c Πp
2-c

(INF-S) Brave reasoning: P |=b,v

SEQS a? Σp
2-c Σp

3-c

Cautious reasoning: P |=c,v

SEQS a? Πp
2-c Πp

3-c

(COH-S) Existence: SEQS(P ) 6= ∅ ? Σp
2-c Σp

3-c

(i) coNP-complete for each of normal, stratified, and headcyle free P , and

(ii) Πp
2-complete for disjunctive and stratified disjunctive P .

In all cases, coNP- resp. Πp
2-hardness holds for S = (Σ), i.e., SEQ-model semantics.

Proof. The membership parts for MCH can be derived as follows. Given an HT-interpretation (X,Y ) of
a program P , we can verify by Theorem 8 whether it is a SEQ-model of P by checking that (X,Y ) |= P ,
which obviously is feasible in polynomial time, and proving h-minimality (item (i′)) and gap-minimality
(item (ii′)) of (X,Y ); as for (i′), a guess for a HT-model (X ′, Y ) of P such that X ′ ⊂ X can be verified
in polynomial time; thus h-minimality can be tested in coNP. Condition (ii′) on top can be decided using
an oracle for Πp

2 that no h-minimal model (X ′, Y ′) with gap(X ′, Y ′) ⊂ gap(X,Y ) exists; this establishes
membership in Πp

2. In case that P is hcf or normal, deciding h-minimality is polynomial, since (i′) amounts to
X ∈ MM (P Y ); if P is hcf then also P Y is hcf, and minimal model checking for such programs is polynomial
[7]; if P is normal, then P Y is Horn and minimal model checking is well-known to be polynomial.

As for split SEQ-models, by Theorem 22 deciding whether (X,Y ) is a SEQ-model of P w.r.t. S =
(S1, ..., Sn) reduces to checking whether (X,Y ) and all (X,Y )|Sk

are SEQ-models of P resp. bSk
(Pk−1),

for k = 1, . . . , n. Each program bSk
(Pk−1) is normal (stratified normal, hcf, stratified disjunctive) if P has

this property. Hence the already established membership results for SEQ-models generalize to the case of
splitting sequences.

The matching hardness results for item (ii) and SEQ-models are proved in Appendix C.1; for stratified
normal programs, which covers also normal and hfc-programs, we give a simple reduction from minimal
model checking of positive programs P (which is well-known to be coNP-complete, cf. [14]). For any rule r,
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let cs(r) be its constraint rewriting, i.e., cs(r) =← B+(r), notB−(r), notH(r), and let cs(P ) = {cs(r) |
r ∈ P}. Then M ∈ MM (P ) iff (∅,M) ∈ SEQ(cs(P )). All hardness results trivially extend to arbitrary
splitting sequences, which establishes the result. 2

Theorem 37 Given a program P , a splitting sequence S, an atom a and a value v ∈ {t, f ,bt}, deciding
whether

(i) P |=b,v

SEQS a is Σp
2-complete for each of normal, stratified normal, and hcf P and Σp

3-complete for
disjunctive and stratified disjunctive P ;

(ii) P |=c,v

SEQS a is Πp
2-complete for each of normal, normal stratified, and hcf P and Πp

3-complete for
disjunctive and stratified disjunctive P .

In all cases, Σp
2/Πp

2- resp. Σp
3/Πp

3-hardness holds for S = (Σ), i.e., SEQ-model semantics.

Proof. Membership of brave (resp. cautious) reasoning from SEQ-models w.r.t. S in Σp
3 (resp. Πp

3) for
disjunctive programs follows from Theorem 36, and similarly membership for normal, normal stratified and
hcf-programs in Σp

2 [resp. Πp
2]. The Σp

3/Πp
3-hardness for brave [resp. cautious] reasoning from SEQ-models

from stratified disjunctive programs is proven in Appendix C.1 resp. C.2. The Σp
2/Πp

2-hardness for stratified
normal programs (and thus for normal and hcf-programs) follows by a reduction from brave (resp. cautious)
reasoning from positive disjunctive programs P , which is Σp

2- resp. Πp
2-hard (see Appendix C.1). For every

such P and atom a, we have that a ∈ M for some M ∈ MM (P ) iff cs(P ) |=b,bt
S a (resp. P |=f

c a iff
cs(P ) |=c,f

SEQ a); indeed, the SEQ-models of P and cs(P ) are the HT-models (M,M) resp. (∅,M), where
M ∈ MM (P ). 2

Notably brave reasoning has the same complexity in all cases, if we fix the truth value v arbitrarily,
already for S = At(P ) (i.e., for SEQ-models). For cautious reasoning, this similarly holds, except that for
v = bt and S = At(P ), the complexity drops to coNP resp. ΠP

2 (see Appendix C.2).

Theorem 38 Given a program P and a splitting sequence S, deciding whether SEQS(P ) 6= ∅ is

(i) Σp
2-complete for each of normal, stratified normal, and hcf P ; and

(ii) Σp
3-complete for stratified disjunctive and disjunctive P ; and

(iii) NP-complete for all program classes considered, if S = (Σ) (i.e., for SEQ in place of SEQS).

Proof. The membership parts of (i) and (ii) follow easily from the results for MCH in Theorem 36, as a
candidate SEQ-model of P w.r.t. S can be guessed and checked with an NP resp. Σp

2 oracle in polynomial
time. The hardness parts of (i) and (ii) can be obtained via a reduction from brave reasoning P |=v

b a in
Problem INF. The Σp

3-hard (resp. Σp
2-hard) instances are of a form such that P |=v

b a iff some SEQ-model
(X,Y ) of P exists with a ∈ Y . Let b be a fresh atom and define then P ′ = P ∪ {← b; b← not a}. Then P ′

has a SEQ-model w.r.t. S = (At(P ), At(P ′)) iff P |=v
b a; this proves the Σp

3- (resp. Σp
2-) hardness.

The result in (iii) is an immediate consequence of the NP-completeness of SAT (satisfiability of a clause
set) in propositional logic and the classical coherence property (D3) of SEQ-model semantics. 2

Canonical split SEQ-semantics For SCC- andMJC-splitting sequences, we have

Theorem 39 The results on Problems MCH, INF and COH in Table 2 continue to hold if S is restricted to
SCC- (resp.MJC-) splitting sequences.
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Proof. Indeed, the respective hardness proofs are extended to this setting. For a program P , let p be a fresh
atom and let Pcl = P ∪ {a ← a, p; p ← p, a | a ∈ Σ}. Clearly, P and Pcl have the same SEQ-models,
and Pcl has the single SCC Σ′ = Σ ∪ {p}. Exploiting this, the programs for MCH and INF have the single
splitting sequence S = (Σ′) and those for Problem COH have S′ = (Σ′,Σ′ ∪ {b}); these are SCC- and
MJC-splitting sequences. Furthermore, from S′ we conclude that no method µ as in Subsection 7.1 exists
(under usual complexity hypotheses). 2

7.3 Constructing and recognizing canonical splitting sequences

It is well-known that SCC(P ) and SG(P ) are efficiently computable from P (using Tarjan’s [40] algorithm
even in linear time); hence, it is not hard to see that one can recognize a SCC-splitting sequence S in
polynomial time, and that every such S can be (nondeterministically) generated in polynomial time (in fact,
in linear time). We obtain similar tractability results forMJC(P ) andMJC-splitting sequences. To this
end, we first note the following useful proposition.

Proposition 40 Let P be a program and let K1,K2 ∈ SCC(P ). Then K1 and K2 satisfy (i) and (ii) of
Definition 12 iff they are disconnected in SG(P ), i.e., no path from K1 to K2 and vice versa exists.

Based on this proposition, we can characterize the joinable pairs that are witnessed by a constraint from r
as follows. As usual, let us call a SCC Ci in a set C ⊆ SCC(P ) of SCCs maximal, if no Cj in C exists that is
comparable to Ci in SG(P ) and ordered after Ci, i.e., every topological ordering of SG(P ) is of the form
(. . . , Cj , . . . , Ci, . . .).

Corollary 41 Given a constraint r ∈ P , let C1, . . . , Cl be the maximal SCCs C of P in SG(P ) such that
At(r) ∩ C 6= ∅. Then (K1,K2) where K1 6= K2 is a joinable pair of P witnessed by r (i.e., satisfies (iii) for
r) iff K1,K2 ∈ {C1, . . . , Cl}.

By exploiting this characterization, we can constructMJC(P ) and furthermore JG(P ) by the following
steps:

1. compute DG(P ), SCC(P ) and SG(P );

2. for every constraint r ∈ P , determine all maximal Cr1 , . . . , C
r
l in SCC(P ) such that Cri ∩At(r) 6= ∅;

3. letCr = Cr1∪· · ·∪Crl , and set MC := {Cr | r ∈ P,H(r) = ∅} and NMI := SCC(P )\{Cr1 , . . . , Crl |
r ∈ P,H(r) = ∅};

4. merge J1, J2 ∈ MC such that J2 ∩ J2 6= ∅ (i.e., set MC := (MC \ {J1, J2}) ∪ {J1 ∪ J2}) until no
longer possible;

5. set MJC(P ) := MC ∪ NMI and JG(P ) = (VJG , EJG) where VJG = MJC(P ) and EJG =
{(J1, J2) | J1 6= J2 ∈MJC(P ), ∃a ∈ J1, ∃b ∈ J2, (a, b) ∈ EDG}.

Example 29 Reconsider the program P from Example 24, which contains the constraints r1: ← b, not a and
r2: ← b, not c. We recall that SCC(P ) = {{a}, {b}, {c}, {d}, {e}}. In Step 2 of the procedure, the maximal
SCCs of r1 are {a}, {b} and the single maximal one of r2 is {b}; thus in Step 3, we have MC = {{a, b}, {b}}
and NMI = {{c}, {d}, {e}}. In Step 4, {a, b} and {b} are merged, resulting in MC = {{a, b}}. Finally, in
Step 5MJC(P ) is assigned MC ∪NMI = {{a, b}, {c}, {d}, {e}}; this is the correct result.
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The following result states the correctness of the procedure and that it can be implemented to run in
bilinear time.

Theorem 42 Given a program P ,MJC(P ) and JG(P ) are computable in time O(cs·‖P‖), where cs =
|{r ∈ P | H(r) = ∅}| is the number of constraints in P and ‖P‖ is the size of P .

In particular, the algorithm runs in linear time if the number of constraints is bounded by a constant. It
remains as an interesting open issue whether the same time bound is feasible without this constraint.

8 Related Work

In this section, we first review some general principles for logic programs with negation, and we then consider
the relationship of semi-stable and semi-equilibrium semantics to other semantics of logic programs with
negation. Finally, we address some possible extensions of our work.

8.1 General principles

In the context of logic programs with negation, several principles have been identified which a semantics
desirably should satisfy. Among them are:

• the principle of minimal undefinedness [45], which says that a smallest set of atoms should be undefined
(i.e., neither true nor false);

• the principle of justifiability (or foundedness) [45]: every atom which is true must be derived from the
rules of the program, possibly using negative literals as additional axioms.

• the principle of the closed world assumption (CWA), for models of disjunctive logic programs (Eiter et
al. [16]): “If every rule with an atom a in the head has a false body, or its head contains a true atom
distinct from a w.r.t. an acceptable model, then a must be false in that model.”

It can be shown that both the semi-stable and the semi-equilibrium semantics satisfy the first two principles
(properly rephrased and viewing bt as undefined), but not the CWA principle; this is shown by the simple
program P = {a← not a} and the acceptable model {Ka}. However, this is due to the particular feature of
making, as in this example, assumptions about the truth of atoms; if the CWA condition is restricted to atoms
a that are not believed by assumption, i.e., Iκ(a) 6= bt in a semi-stable resp. semi-equilibrium model Iκ,
then the CWA property holds.

We eventually remark that Property N can be enforced on semi-stable models by adding constraints
← a, not a for all atoms a to the (original) program. However, enforcing Property K on semi-stable models
is more involved and efficient encodings seem to require an extended signature.

8.2 Related semantics

In this section, we relate the semi-stable and semi-equilibrium semantics to several semantics in the literature
that allow for models even if a no answer set of a program exists.
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8.2.1 Evidential Stable Models

Motivated by the fact that a disjunctive deductive database (DDDB) may lack stable models or even P-
stable models, Seipel [39] presented a paracoherent semantics, called the evidential stable model (ESM)
semantics, which assigns some model to every DDDB (that is, to every disjunctive logic program), such that
the properties (D1)-(D3) in the Introduction are satisfied. Similar to [38], but guided by slightly different
intuition, he defined the evidential stable models of a program P in a two-step process. First P is transformed
into a positive disjunctive program P E , called the evidential transform of P , whose answer sets, i.e., its
minimal models are considered. Among them are in the second step those selected that are informally
preferred according to the amount of reasoning by contradiction that they involve.

Formally, for a given Σ let ΣE = Σ ∪ {Ea | a ∈ Σ}, where Ea intuitively means that there is evidence
that a is true. Given a program P , its evidential transformation P E consists of the following rules:

1. H(r) ∪ EB−(r)← B+(r) and

2. EH(r) ∪ EB−(r)← EB+(r), for each rule r ∈ P of form (1), and

3. Ea← a, for each a ∈ Σ.

where for every set S ⊆ Σ of atoms, ES = {Ea | a ∈ S}. Intuitively, the rules in (2) and (3) correspond to
the rules that are added to Sakama and Inoue’s program P κ in the epistemic transformation to ensure the
Properties N and K (see Definition 6); the rules in (2), however, are quite different from P κ. They intuitively
infer evidence for the truth of some atom bj under negation (m < j ≤ n) from the violation of the positive
part of the rule (i.e., if all bj , 1 ≤ j ≤ m are true and no ai, 1 ≤ i ≤ l is true).

An interpretation I over ΣE is an evidential stable model, if (1) I is a minimal model of P E , and (2) I
has among all minimal models of P E a ⊆-minimal E-violation set VE(I), which is defined as V(I) = {a ∈
Σ | Ea ∈ I, a /∈ I}.

Now the following can be shown. For every bi-interpretation (X,Y ) let (X,Y )E = X ∪ EY , and for
every I ⊆ ΣE , let β(I) the inverse of ·E , i.e., β(I) = (X,Y ) such that (X,Y )E = I .

Theorem 43 Let P be a coherent program over Σ. Then for every bi-interpretation (X,Y ) over Σ, it holds
that (X,Y ) ∈ SEQ(P ) iff (X,Y )E is an evidential stable model of P .

Thus the SEQ-model semantics coincides with the evidential stable model semantics for disjunctive
logic programs. The theorem above gives a characterization of evidential stable models in terms of HT-
logic, and in turn we obtain with P E a simpler program to describe the SEQ-models than the epistemic
transformation P κ in Section 4. Note, however, that the program is not a straightforward encoding of the
semantic characterization of SEQ-models in Theorem 8; P E does not contain all h-minimal HT-models of P ,
but sufficiently many to single out all the SEQ-models by gap minimization.

8.2.2 CR-Prolog

In order to deal with inconsistency in answer set programs, Balduccini and Gelfond introduced CR-Prolog
[4] as a declarative approach for inconsistency removal from program. Roughly speaking, each program P is
equipped with a further set of rules CR of the form

r : h1 or . . . or hk
+← l1, . . . , lm, not lm+1, . . . , not ln.

where intuitive reading is: if l1, . . . , lm are accepted beliefs while lm+1, . . . , ln are not, then one of h1, . . . , hk
“may possibly” be believed. In addition, a preference relation on the rules may be provided.
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Rules from this pool CR can be added to restore consistency of the program P if no answer set exists,
applying Occam’s razor. Informally, a subset-minimal set R ⊆ CR of rules is chosen such that P ′ = P ∪R′
is coherent, where R′ is R cast to the ASP syntax; the answer sets of P ′ are then accepted as CR-answer
sets of P . Formally, P and CR are compiled into a single abductive logic program where an abducible atom
appl(r) is used for the each rule r from CR to control (and be aware of) its applicability; a minimal set
of abducibles may be assumed to be true without further justification. For simplicity, however, we use the
abstract description from above.

The CR-Prolog approach is different from semi-stable and SEQ-model semantics in several respects.
First, it provides a (syntactic) inconsistency management strategy, not a semantic treatment of incoherence
at the semantic level of interpretations. Second, it remains with the user to ensure coverage of all cases of
incoherence; this bears risk that some cases are overlooked. On the other hand, depending on the application
it might be preferred that this is pointed out.

Even if CR consists of all atoms in P , CR-answer sets and SEQ-models may disagree, as adding facts, as
done in this case by CR-Prolog, is stronger than blocking negated atoms as in semi-stable and SEQ-models
semantics (which then admits more answer sets).

Example 30 Consider the program P = {a← not a; c← not b; b∨ c← a}. This program has the unique
SEQ-model ({c}, {a, c}); i.e., c is true, b is false, and a is believed true.

Let CR = {ra : a
+←; rb : b

+←; rc : c
+←} and assume that there are no preferences. Then R′ = {ra}

is the single minimal subset of CR such that P ′ = P ∪ R′ is coherent, and P ′ = {a ← not a; c ←
not b; b ∨ c← a; a←} has two answer sets, viz. {a, c} and {a, b}, which are then both CR answer sets.

The program in the previous example shows that adding a as a fact is stronger than blocking the use of
a under negation. We remark that this similarly applies to the generalised stable model semantics [23], in
which abducible facts may be added to the program P in order to obtain a stable model.

8.2.3 Well-founded Semantics

The most prominent approximation of the stable semantics is the well-founded semantics (WFS) [42]. It
assigns each normal logic program P , in our terminology, an HT-model WF (P ) = (I, J) (called the
well-founded model) such that all atoms in I are regarded as being true and all atoms not in J being false;
all the remaining atoms (i.e., those in gap(WF (P )) are regarded as undefined (rather than possibly true,
as in HT logic). Intuitively, the false atoms are those which can never become true, regardless of how the
undefined atoms will be assigned. Extending WFS to disjunctive program is non-trivial and many proposals
have been made, but there is no general consensus on the “right” such extension (see [43, 11] for more recent
proposals); we comment on the proposal of Cabalar et al. [11] in the subsection on partial stable models
below.

The well-founded semantics has many different characterizations; among them is the well-known
alternating fixpoint-characterization, cf. [19, 5]: for normal constraint-free programs P , the operator γP (X) =
LM (PX), X ⊆ Σ is anti-monotonic, where LM (Q) denotes the unique minimal model of Q (which for
Q = PX exists). We then have WF (P ) = (I, J) where I is the least fixpoint of the monotonic operator
γ2P (X) = γP (γP (X)), and J = γP (I). Furthermore, the well-founded model is the least partial stable
model (see Section 8.2.4 below); it has been characterized in the logic HT2 in terms of the partial equilibrium
model that leaves the most atoms undefined [12].

With regard to Section 8.1, WFS does not satisfy minimal undefinedness, but justifiability and naturally
the CWA principle. It does not satisfy answer set coverage (D1) nor congruence (D2) (even if a single answer
set exists), but coherence (D3). Roughly speaking, the well-founded model remains agnostic about atoms
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that are involved in cycles through negation whose truth value can not be determined from other parts of the
program, and it propagates undefinedness. This may effect that all atoms remain undefined; e.g., the program
in Example 17 has this property.

It is well-known that the well-founded model WF (P ) = (I, J) approximates the answer sets of P in
the sense that I ⊆ M ⊆ J for each answer set M of P ; it is thus geared towards approximating cautious
inference of literals from all answer sets of P , rather than towards approximating individual answer sets. If
no answer set exists, WFS avoids trivialization and still yields a model; however, the notion of undefinedness
and the associated propagation may lead to less informative results, as shown in Example 3.

SEQ-refinement of the WFS A closer look at the WFS reveals that the SEQ-model semantics refines it in
the following sense.
Notation. Let for HT-interpretations M = (X,Y ) and M ′ = (X ′, Y ′) denote M v M ′ that X ′ ⊆ X and
Y ⊆ Y ′, i.e., M is a refinement of M ′ that results by assigning atoms in gap(M ′) either true of false.8

Recall that an HT-interpretation (X,Y ) of a program P is h-minimal, if no HT-model (X ′, Y ) exists
such that X ′ ⊂ X; for normal P , this means that X is the least model of P Y .

Proposition 44 Let M = (X,Y ) be an h-minimal model of a (constraint-free) normal program P . If
gap(M) ⊆ gap(WF (P )), then M vWF (P ), i.e., M is a refinement of the well-founded model of P .

Note that this proposition is not immediate as we just compare gaps, not models themselves. The result
follows from some well-known properties of WF (P ) and its relationship to the answer set semantics.

First, as already mentioned above, WFS is an approximation of the stable semantics:

Lemma 45 For every equilibrium (stable) model M = (Y, Y ) of P , it holds that M vWF (P ).

Furthermore, WF is such that by making yet unassigned atoms true, the values of the already assigned
atoms are not affected. That is,

Lemma 46 For every set G ⊆ gap(WF (P )), it holds that WF (P ∪G) vWF (P ).

Intuitively, this is because for each atom a outside gap(WF (P )), a rule already fires resp. all rules are
definitely not applicable. Next, h-minimality allows for unsupported atoms (the gap). By making them facts,
we get an answer set:

Lemma 47 If M = (X,Y ) is a h-minimal model of P , then M = (Y, Y ) is an answer set of P ′ =
P ∪ gap(M).

Indeed,X is the least model of P Y , so each atom inX can be derived from P Y ; by adding gap(M) = Y −X ,
all atoms of Y can be derived from P Y ∪ gap(M) = P ′Y , and clearly no proper subset can be derived.

Armed with these lemmas, we now prove the proposition.
Proof. [of Proposition 44] Let M = (X,Y ) be a h-minimal model of P such that gap(M) ⊆ gap(WF (P )),
and let WF (P ) = (I, J). By Lemma 47, N = (Y, Y ) is an answer set of P ′ = P ∪ gap(M). By
Lemma 45, N vWF (P ′), and by Lemma 46, WF (P ′) vWF (P ). As refinement is transitive, we obtain
N vWF (P ); it follows that Y ⊆ J .

Regarding X , by the alternating fixpoint characterization of WF (P ) we have I = LM (P J), and thus
WF (P ) is a h-minimal model of P ; as M is a h-minimal model of P , we have X = LM (P Y ). As
γP (I) = LM (P I) is anti-monotonic and Y ⊆ J , it follows that X ⊇ I .

Thus, we get M = (X,Y ) v (I, J) = WF (P ). This proves the proposition. 2

8That is, M vM ′ iff M ′ ≤p M , where ≤p is the precision ordering.
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From this proposition, we obtain a refinement result for arbitrary normal programs, i.e., programs that
may contain constraints. For such a program P , we define its well-founded model as WF (P ) = WF (P ′),
where P ′ is the constraint-free part of P , if WF (P ′) |= P \ P ′; otherwise, WF (P ) does not exist. Note that
each constraint r in P must have a false body in WF (P ), i.e., either some bi ∈ B+(r) is false in WF (P ) or
some cj ∈ B−(r) is true in WF (P ) (this can be seen from the alternating fixpoint characterization).

Corollary 48 (of Proposition 44) Every normal program P such that WF (P ) exists has a SEQ-model M
such that M v WF (P ). In fact, every SEQ-model M of P such that gap(M) ⊆ gap(WF (P )) satisfies
M vWF (P ).

Proof. Indeed, SEQ-models are special h-minimal models (global gap-minimization), so the result follows
from Proposition 44 and the fact that WF (P ) = WF (P ′) = (I, J) is h-minimal (as I = LM (P J) =
LM (P ′J)), where P ′ is the constraint-free part of P . 2

Note, however, that not every SEQ-model refines the well-founded model. E.g., take P = {a ←
not a, not b}. Then WF (P ) = (∅, {a}) but the SEQ-models are M1 = (∅, {a}) and M2 = (∅, {b}), and
M2 has a gap outside the gap of WF (P ).

If desired, one can easily restrict the SEQ-models of a program P to those which refine its well-founded
model WF (P ) = (I, J), by replacing P with

Pwf = P ∪ I ∪ {← A | A ∈ Σ \ J}.

Note that WF (Pwf ) exists whenever WF (P ) exists. We then obtain the following result.

Proposition 49 For every normal program P such that WF (P ) exists, SEQ(Pwf ) = {M ∈ SEQ(P ) |
gap(M) ⊆ gap(WF (P ))}.

By combining Corollary 48 and Proposition 49, we get a paracoherent way to refine the well-founded
semantics for query answering, which coincides with the answer set semantics for coherent programs and
provides in general more informative results and reasoning by cases (see Examples 3 and 4).

8.2.4 Partial Stable Model Semantics

P-stable (partial stable) models, which coincide with the 3-valued stable models of [36], are one of the best
known approximation of answer sets. Like the well-founded model, P-stable models can be characterized
in several ways (cf. [16]); with respect to equilibrium logic, Cabalar et al. [12] semantically characterized
P-stable models in the logic HT2 in terms of partial equilibrium models. For the concerns of our discussion,
we use here a characterization of P-stable models (X,Y ) in terms of the multi-valued operator γ̂P (X) =
MM (PX) as the HT-interpretations (X,Y ) such that Y ∈ γ̂P (X) and X ∈ γ̂P (Y ); this characterization
is easily obtained from [16]. In particular, for normal programs WF (P ) is a P-stable model of P (and in
fact the least refined such model w.r.t. v), and every answer set M of P (as M = LM (PM )) amounts to a
P-stable model (M,M) of P ; in this vein, according to Cabalar et al. [11, 12] the well-founded models of a
disjunctive program P are the least refined P-stable models M of P (i.e., no P-stable model M ′ 6= M of P
exists such that M vM ′); however, no well-founded model might exist.

The P-stable models, while more fine-grained than the well-founded model, behave similarly with regard
to the properties in Subsection 8.1 and the properties (D1)–(D3) in the Introduction. Among the refinements
of P-stable models in [16], the one that is closest in spirit to semi-stable and SEQ-models are the L-stable
models, which are the P-stable models that leave a minimal set of atoms undefined.

In fact, L-stable models satisfy all properties in Subsection 8.1 and (D1)–(D3), with the exception that
coherence (D3) fails for disjunctive programs, as such programs may lack a P-stable model, and thus also an
L-stable model.
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Example 31 The program

P = {a← not b; b← not c; c← not a; a ∨ b ∨ c } (16)

has no P-stable models, while it has multiple SEQ-models, viz. (a, ac), (b, ab), and (c, bc), which coincide
with the SST -models. Intuitively, one of the atoms in the disjunctive fact a ∨ b ∨ c←, say a, must be true;
then c must be false and in turn b must be true. The resulting (total) interpretation ({a, b}, {a, b}), however,
does not fulfill that {a, b} is a minimal model of P {a,b} = {b←; a ∨ b ∨ c←}. With a symmetric argument
for b and c, we conclude that no P-stable model of P exists. However, by adopting in addition that c is
believed true, we arrive at the SEQ-model (a, ac).

The main difference between that L-stable semantics and semi-stable resp. semi-equilibrium semantics is
that the former takes —like P-stable semantics—a neutral position on undefinedness, which in combination
with negation may lead to weaker conclusions.

For example, the program P in Example 3 has a single P-stable model, and thus P has a single L-stable
model which coincides with its well-founded model; thus we can not conclude under L-stable semantics from
P that visits barber(joe) is false.

Also the program in Example 17 has a single P-stable (and L-stable) model in which all atoms are
undefined, while c is true under SEQ-model semantics. Similarly, the program

P = {a← not b; b← not c; c← not a} (17)

has a single P-stable (and thus L-stable) model in which all atoms are undefined; if we add the rules d← a,
d← b, and d← c to P , the new program cautiously entails under both semi-stable and SEQ-model semantics
that d is true, but not under L-stable semantics.

Possible SEQ-refinement of the L-stable semantics As the SEQ-semantics refines the WFS as shown
in Section 8.2.3, the natural question is whether a similar refinement property holds for L-stable models.
Unfortunately this is not the case, even for normal programs without constraints (which always possess
L-stable models); this is witnessed e.g. by the following example.

Example 32 Consider the program

P =

{
a← not b, d; b← not a, d; c← not c
d← not c; d← not a, not e; d← not b, not e

}
∪ {e← not a, not b.}.

Intuitively, the rules with heads a and b make a guess a or b, if d is true; c must be undefined as there is no
other way to derive c than from its negation; d is true if one of a and b is false but not both, i.e., we have a
guess for a and b. Thus proper guessing on a and b makes the gap smallest.

Under WFS, all atoms must be undefined as each atom occurs in of P only on cycles with negation.
Furthermore, N1 = (ad, acd) and N2 = (bd, bcd) are L-stable models, because they are partially stable and
no smaller gap than gap(N1) = gap(N2) = {c} is possible. There is no further L-stable model (d would
need to be true in it, which means that e must be false and hence either a false or b false; thus we end up with
N1 or N2), and actually also no other P-stable model.

As one can check,M = (e, ec) is a h-minimal model of P , and gap(M) = {c}. ThusM is an ”additional”
h-minimal model of P , and M does neither refine N1 nor N2.

If we slightly extend P in (17) to

P ′ = P ∪ {c′ ← not c, not c′}, (18)
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then we get a similar situation. Again, as c only occurs in the head of the rule c← not c, it must be undefined
in each partial stable model, and hence the same follows also for c′. Thus we obtain that N ′1 = (ad, acc′d)
and N ′2 = (bd, bcc′d) are the L-stable models of P ′, and they have gap(N ′1) = gap(N ′2) = {c, c′}. On the
other hand, M is also an h-minimal model of P ′, and gap(M) = {c}; thus M is the unique SEQ-model of
P ′, and the models are unrelated.

Possible SEQ-refinement of disjunctive P-stable models The previous example showed that SEQ-models
with smaller gaps than L-stable models do not necessarily refine them. However, as they refine always some
P-stable model (the WFM) of a normal program, it does not rule out that the refine some P-stable model of a
disjunctive program P , and in particular a well-founded model (i.e., a least refined (w.r.t. v) P-stable model).
It appears that this refinement property does not hold.

Example 33 Consider the following variant of the program on line (16) in Example 31:
P = {a← not b; b← not c; c← not a; a ∨ b ∨ c← d; d ∨ e; d← e, not d }.

By the disjunctive fact d ∨ e, either d or e must be true in each h-minimal model (and thus in each P-stable
resp. SEQ-model of P ). If d is true, then the clauses containing a, b, c, do not admit a P-stable model;
if e is true, the single P-stable model is M = (e, abcde). On the other hand, the SEQ-models of P are
M1 = (ad, acd), M2 = (bd, abd), and M3 = (cd, bcd); note that each h-minimal model of P in which e is
true must have d and some atom from a, b, c believed true but not true, and thus can not be gap-minimal. As
each Mi has smaller gap than M but does not refine it, the refinement property does not hold.

Note that the example shows even more: different from normal programs, for disjunctive programs the
SEQ-models do not refine the intersection of all P-stable models (i.e., the HT-interpretation (X,Y ) where
X resp. Σ \ Y is what is true resp. false in every P-stable model of P ). Thus in conclusion, for disjunctive
programs, P-stable and SEQ-models are in general unrelated.

8.2.5 Further Semantics

The regular model semantics [45] is another 3-valued approximation of answer set semantics that satisfies
least undefinedness and foundedness, but not the CWA principle. However, it is classically coherent (satisfies
(D3)). For the odd loop program P in (17) the regular models coincide with the L-stable models; the program
P ′ in (18) has the regular models {a}, {b}, and {c}. While regular models fulfill answer set coverage, they
do not fulfill congruence. For more discussion of 3-valued stable and regular models as well as many other
semantics coinciding with them, see [16].

Revised stable models [32] are a 2-valued approximation of answer sets; negated literals are assumed
to be maximally true, where assumptions are revised if they would lead to self-incoherence through odd
loops or infinite proof chains. For example, the odd-loop program P in (17) has three revised stable models,
viz. {a, b}, {a, c}, and {b, c}. The semantics is only defined for normal logic programs, and fulfills answer
set coverage (D1) but not congruence (D2), cf. [32]. Similarly, the so called pstable models in [28], which
should not be confused with P-stable models, have a definition for disjunctive programs however, satisfy
answer set coverage (D1) (but just for normal programs) and congruence (D2) fails. Moreover, every pstable
model of a program is a minimal model of the program, but there are programs, e.g. P in (17) again, that
have models but no pstable model, thus classical coherence does not hold.

8.3 Modularity

To our knowledge, modularity aspects of paracoherent semantics have not been studied extensively. A
noticeable exception is [16], which studied the applicability of splitting sets for several partial models
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semantics, among them the P-stable and the L-stable semantics that were already considered above. While
for P-stable models a splitting property similar to the one of answer sets holds, this is not the case for L-stable
models, due to global gap-minimization however, an analogue to Theorem 32, with L-stable models in place
of SCC-models is expected to hold.

Huang et al. [21] showed that hybrid knowledge bases, which generalize logic programs, have modular
paraconsistent semantics for stratified knowledge bases; however, the semantics aims at dealing with classical
contradictions and not with incoherence in terms of instability through cyclic negation.

Pereira and Pinto [34], using a layering notion that is similar to SCC-split sequences, introduce layered
models (LM) semantics which is an alternative semantics that extends the stable models semantics for normal
logic programs. The layered models of a program P are a superset of its answer sets, and this inclusion can
be strict even if P is coherent; thus, property (D2) does not hold. In a sense, the CWA is relaxed more than
necessary in the model construction process.

Faber et al. [17] introduced a notion of modularity for answer set semantics, based on syntactic relevance,
which has paracoherent features. However, this notion was geared towards query answering rather than model
building, and did not incorporate gap minimization at a semantic level.

Finally, we look at models related to a splitting sequence. Not every SEQ-model of P that is a refinement
of WF (P ) is a SCC-model of P ; we might “lose” SEQ-models by splitting. E.g.,

P = { a← not a; b← not b, not a; c← not b, not c }

has the SCCs C1 = {a}, C2 = {b} and C3 = {c}, and WF (P ) = (∅, abc); the single SCC-model of P is
M = (∅, ac), while P has a further SEQ-model M ′ = (∅, ab); the latter is lost along the splitting sequence
S = (a, ab, abc), as restricted to C1, M has smaller gap (viz. {a}) than M ′ (whose gap is {a, b}). However,
we get an analogue to Corollary 48.

Proposition 50 Let P be a normal program such that WF (P ) exists and let S be an arbitrary splitting
sequence of P . Then P has some SEQS-modelM such thatM vWF (P ), and moreover every SEQS-model
M of P such that gap(M) ⊆ gap(WF (P )) satisfies M vWF (P ).

The reason is that the well-founded semantics satisfies modularity with respect to splitting sequences.
This is a consequence of the following lemma.

Lemma 51 For every splitting set S of a normal program P such that WF (P ) exists, it holds that

1. WF (P )|S is a partial stable model of bS(P ) (recall that |S denotes restriction to S), and

2. WF (P ) = WF (tS(P ) ∪ I ∪ {A← notA | A ∈ J \ I}), where WF (bS(P )) = (I, J).

This lemma in turn follows from Proposition 12 in [16], which states this property for partial stable models
of constraint-free (even disjunctive) programs, and WF (P ) is the least partial stable model; note also that
constraints in P merely determine the existence of WF (P ) but do not influence the truth valuation of atoms.

An immediate corollary to Proposition 50 is that normal programs P for which the well-founded model
exists and the SCC-model semantics is applicable have some SCC-model that refines the well-founded model
WF (P ), and moreover that every SCC-model of P which adopts some the undefined atoms in WF (P ) as
believed true refines WF (P ); the same holds forMJC-models.

We finally note that we can, as in the case of all SEQ-models of P , restrict the split SEQ-models of P to
those which refine WF (P ) by adding respective constraints; recall that Pwf = P ∪ I ∪ {← A | A /∈ J}
where WF (P ) = (I, J).
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Proposition 52 Let P be a normal program such that WF (P ) exists. Then for every splitting sequence S of
P , it holds that SEQS(Pwf ) = {M ∈ SEQS(P ) | gap(M) ⊆ gap(WF (P ))}.

Proof. [Sketch] By Proposition 49, SEQ(Pwf ) = {M ∈ SEQ(P ) | gap(M) ⊆ gap(WF (P ))}. The result
can then be shown by induction along the split sequence S, using Theorem 22 and Lemma 51. 2

As a consequence of Propositions 50 and 52, in particular the SCC- and MJC-models of a normal
program can be easily restricted such that they refine its well-founded semantics in a paracoherent manner, as
discussed at the end of Subsection 8.2.3.

9 Further Issues

9.1 Language extensions

As already mentioned, semi-stable semantics has originally been developed as an extension to p-minimal
model semantics [38], a paraconsistent semantics for extended disjunctive logic programs, i.e., programs
which besides default negation also allow for strong (classical) negation. A declarative characterization of
p-minimal models by means of frames was given by Alcantara et al. [1], who coined the term Paraconsistent
Answer-set Semantics (PAS) for it. This characterization has been further simplified and underpinned with a
logical axiomatization in [27] by using Routley models, i.e., a simpler possible worlds model.

Our characterizations for both, semi-stable models and semi-equilibrium models, can be easily extended
to this setting if they are applied to semantic structures which are given by quadruples of interpretations rather
than bi-interpretations, respectively to Routley here-and-there models rather than HT-models. Intuitively,
this again amounts to considering two ‘worlds’, each of which consists of a pair of interpretations: one for
positive literals (atoms), and one for negative literals (strongly negated atoms). The respective epistemic
transformations are unaffected except for the fact that literals are considered rather than atoms. One can
also show for both semantics that there is a simple 1-to-1 correspondence to the semi-stable (resp. semi-
equilibrium) models of a transformed logic program without strong negation: A given extended program P is
translated into a program P ′ over Σ∪ {a′ | a ∈ Σ} without strong negation by replacing each negative literal
of the form −a by a′. If (I, J) is a semi-stable (semi-equilibrium) model of P ′, then

(I ∩ Σ, {−a | a′ ∈ I}, J ∩ Σ, {−a | a′ ∈ J})

is a semi-stable (semi-equilibrium) model of P . Note that semi-stable (semi-equilibrium) models of extended
logic programs obtained in this way generalize the PAS semantics, which means that they are paraconsistent
as well as paracoherent. Logically this amounts to distinguishing nine truth values rather than three, with the
additional truth values undefined, believed false, believed inconsistent, true with contradictory belief, false
with contradictory belief, and inconsistent. The computational complexity for extended programs is the same.

Compared to [38], we have confined here to propositional programs, as opposed to programs with variables
(non-ground programs). However, respective semantics for non-ground programs via their grounding are
straightforward. Alternatively, in case of semi-equilibrium models one can simply replace HT-models
by Herbrand models of quantified equilibrium logic [30]. Similarly for the other semantics, replacing
interpretations in the semantic structures by Herbrand interpretations over a given function-free first-order
signature, yields a characterization of the respective models.

9.2 Parametric merging semantics

By the results of Section 7, tractable merging policies that ensure classical coherence (D3) will sometimes
merge more components than necessary. To deal with the issues (1) and (2) in Section 6.2, i.e., with all
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cross-constraints and dependence, a parametric approach that gradually merges more SCCs seems attractive.
We briefly outline here one possible such approach, which merges components within bounded distance.

Denote for every C ∈ SCC(P ) by Dk(C) the set of all descendants of C in SG(P ) within distance
k ≥ 0; then we may proceed as follows.

1. create a graph Gk with a node vr for each constraint r in P , which is labeled with the set

λ(vr) = clp

(⋃
{Dk(Ci) | Ci ∈ SCC(P ), Ci ∩At(r) 6= ∅}

)
of SCCs; that is, all SCCs within distance k to a SCC Ci that intersects with r are collected into one
set, and on the resulting collection D of SCCs a function clp(D) is applied. The latter closes D with
respect to SCCs C that are on some path between members C1 and C2 of D in SG(P ).

2. Merge then nodes vr and vr′ (and their labels, using clp) such that λ(vr) ∩ λ(v′r) 6= ∅ as long as
possible.

3. After that, create a node v for each SCC C that does not occur in any label of the graph, and set
λ(v) = {C};

4. add an edge from v to v′, if v 6= v′ and SG(P ) has some edge (Ci, Cj) where Ci ∈ λ(v) and
Cj ∈ λ(v′).

The resulting graph Gk is acyclic and distinct nodes have disjoint labels. Similar as for JG(P ), any
topological ordering ≤ of Gk induces a splitting sequence S≤ (via the node labels λ(v), which are taken as
union

⋃
λ(v) of the SCCs they contain); thanks to an analog of Theorem 33, one can define theMk-models

of P asMk(P ) = SEQS≤(P ) for an arbitrary ≤.
For k = 0, we have Dk(C) = {C} and thus the node vr in the initial graph G0 contains in its label

λ(vr) the SCCs that intersect r; the final graph G0 is such that each Jx <∈ MJC(P ) is included in
some node label (i.e., J ⊆ λ(v) for some node v). Hence, MMJC(P ) ⊆ M0(P ) holds. As clearly
Mk(P ) ⊆Mk+1(P ) holds for every k ≥ 0, andMk(P ) = SEQ(P ) for large enough k; as holds, we have
a hierarchy of models between MMJC(P ) and SEQ(P ) which eventually establishes (D3); however, the
results of Section 7 imply that predicting the least k such thatMk(P ) 6= ∅ is intractable.

Other relaxed notions of models (using different parameters for cross-constraints and direct dependency)
are conceivable; we leave this for future study.

10 Conclusion

In this paper, we have studied paracoherent semantics for answer set programs, that is, semantics that ascribes
models to (disjunctive) logic programs with non-monotonic negation even if no answer set (respectively
stable model) exists, due to a lack of stability in models caused by cyclic dependency through negation, or due
to constraints. Ideally, such a semantics approximates the answer set semantics faithfully and delivers models
whenever possible, as expressed by the properties (D1)–(D3); this can be beneficially exploited in scenarios
where unexpected inconsistency arises and one needs to stay operational, such as in inconsistency tolerant
query answering. Among few well-known semantics which feature these properties are the semi-stable
model semantics [38], and the novel semi-equilibrium model semantics, which amends the semi-stable model
semantics by eliminating some anomalies. For both semantics, which are defined by program transformations,
we have given model-theoretic characterizations in terms of bi-models and HT-models, respectively; in
particular, semi-equilibrium models relax the notion of equilibrium models, which reconstruct answer sets
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in HT-logic, by allowing for minimal sets of unsupported assumptions. We have then refined the semi-
equilibrium model semantics with regard to modular program structure, by defining models via splitting
sets and splitting sequences; this constrains the set of semi-equilibrium models, in a way that is amenable to
modular bottom up evaluation of programs. For that, we have presented canonical semi-equilibrium models
for which, in analogy to the classical Stratification Theorem for logic programs, the particular evaluation
order does not matter, and we have identified modularity properties for these semantics that allow for flexible
rearrangement in evaluation.

Furthermore, we have characterized the complexity of major reasoning tasks of all these semantics,
and we have compared semi-equilibrium semantics to related proposals for paracoherent semantics and
approximations of answer sets in the literature. Notably, it appeared that semi-equilibrium models coincide
with evidential stable models in [39]; our semantic and computational results thus carry over to them.
Different from other formalisms such as CR-Prolog [4] or generalizes stable models, [23], unsupported
assumptions in semi-stable and semi-equilibrium models serve to block rules but not to establish positive
evidence for deriving atoms from rules. Furthermore, we have shown that the well-founded model of a normal
logic program is refined by semi-equilibrium models, and that the program can be easily modified such that all
semi-equilibrium models refine the well-founded model; the same holds also for canonical semi-equilibrium
models. This provides a paracoherent way to refine the well-founded semantics for inconsistency-tolerant
query answering, which coincides with the answer set semantics for coherent programs and is in general
more informative than the well-founded semantics and supports reasoning by cases, being as close to answer
sets as possible.

As for computation, an attractive feature is that canonical semi-equilibrium semantics allows for easy
switching from a coherent (answer set) mode to a “paracoherent” evaluation mode in the bottom up evaluation
of a program, if incoherence is encountered. And notably, this is possible also for disjunctive logic programs.

10.1 Open issues and outlook

Several issues remain for future work and investigations. A natural issue is to introduce paracoherence for
further language extensions besides strong negation and non-ground programs. Fortunately, the generic
framework of equilibrium logic makes it easy to define SEQ-semantics for many such extensions, among
them nested programs, programs with aggregates and external atoms, hybrid knowledge bases etc. It remains
to consider modularity in these extensions and to define suitable refinements of SEQ-models. Particularly
interesting are modular logic programs [22, 13] where explicit (by module encapsulation) and implicit
modularity (by splitting sets) occur at the same time. Related to the latter are multi-context systems [9], in
which knowledge bases exchange beliefs via non-monotonic bridge rules; based on ideas and results of this
paper, paracoherent semantics for certain classes of such multi-context systems may be devised.

Besides language extensions, another issue is generalizing the model selection. To this end, preference in
gap minimization may be supported, especially if domain-specific information is available; subset-minimality
is a natural instance of Occam’s razor in lack of such information. Furthermore, preference of higher over
lower program components may be considered; however, this intuitively requires more guessing and hinders
bottom up evaluation.

On the computation side, developing efficient algorithms and their implementation remain to be done, as
well integration into an answer set building framework. Currently, experimental prototypes for computing
SST (P ) and SEQ(P ) based on the semantic characterizations are available. Another computation method is
filtering the answer sets of the epistemic transformation P κ resp. its extension PHT or the evidential transform
P E , which are computed with an ASP solver. However simple such postprocessing is not efficient in general;
indeed, the ΣP

3 /ΠP
3 -completeness of brave/cautious reasoning, respectively, calls for better methods. An
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interesting issue in this context is a polynomial transformation of the evaluation of normal and hcf-programs
into disjunctive ASP, which by our results is feasible.

We have considered paracoherence based on program transformation, as introduced by Inoue and Sakama
[38]. Other notions, like forward chaining construction and strong compatibility [44, 25] might be alternative
candidates to deal with paracoherent reasoning in logic programs; this remains to be explored.

Finally, another issue is to investigate the use of paracoherent semantics in AI applications such as
diagnosis, where assumptions may be exploited to generate candidate diagnoses, in the vein of the generalised
stable model semantics [23], or in systems for planning and reasoning about actions based on ASP, where
emerging incoherence should be meaningfully tolerated.
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A Appendix: Proofs

A.1 Section 3

Proof of Proposition 3. Let r be a rule over Σ, and let (I, J) be a bi-interpretation over Σ.
(⇐) Suppose that (I, J) satisfies (a), i.e., B+(r) ⊆ I and J ∩ B−(r) = ∅ implies I ∩H(r) 6= ∅ and

I ∩B−(r) = ∅. We prove that (I, J) |=β r, considering three cases:

1) Assume that B+(r) 6⊆ I . Then (I, J) 6|=β a, for some atom a ∈ B+(r), and thus (I, J) 6|=β B(r) which
implies (I, J) |=β r.

2) Assume that J ∩B−(r) 6= ∅, Then (I, J) 6|=β ¬a, for some atom a ∈ B−(r), and thus (I, J) 6|=β B(r)
which implies (I, J) |=β r.

3) Assume that B+(r) ⊆ I and J ∩ B−(r) = ∅. Then, since (I, J) satisfies (a), it also holds that
I ∩H(r) 6= ∅ and I ∩ B−(r) = ∅. From B+(r) ⊆ I and I ∩ B−(r) = ∅, we conclude that I |= B(r).
Moreover, I ∩H(r) 6= ∅ implies (I, J) |=β H(r). Thus, (I, J) |=β r.

By our assumption, one of these three cases applies for (I, J), proving the claim.
(⇒) Suppose that (I, J) |=β r. We prove that (I, J) satisfies (a), distinguishing two cases:

1) Assume that (I, J) 6|=β B(r). Then either (I, J) 6|=β a, for some atom a ∈ B+(r), or (I, J) 6|=β ¬a, for
some atom a ∈ B−(r). Hence, B+(r) 6⊆ I or J ∩B−(r) 6= ∅, which implies that (I, J) satisfies (a).

2) Assume that (I, J) |=β H(r) and I |= B(r). Then I ∩H(r) 6= ∅ and I ∩ B−(r) = ∅, and thus (I, J)
satisfies (a).

By our assumption, one of the two cases applies for (I, J), which proves the claim. 2

Proof of Proposition 4. Let P be a program over Σ. Part (1). First, let (I, J) be a bi-model of P . We
prove that (I, J)κ,P |= P κ.

Towards a contradiction assume the contrary. Then there exists a rule r′ in P κ, such that (I, J)κ,P 6|= r′.
Suppose that r′ is not transformed, i.e., r′ ∈ P and B−(r′) = ∅. Since (I, J) |=β r

′, by Proposition 3
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we conclude that B+(r′) ⊆ I implies I ∩H(r′) 6= ∅ (recall that B−(r′) = ∅). By construction (I, J)κ,P

restricted to Σ coincides with I . Therefore, B+(r′) ⊆ (I, J)κ,P implies (I, J)κ,P ∩ H(r′) 6= ∅, i.e.,
(I, J)κ,P |= r′, a contradiction.

Next, suppose that r′ is obtained by the epistemic transformation of a corresponding rule r ∈ P of the
form (1), and consider the following cases:

– r′ is of the form (3): then {b1, . . . , bm} ⊆ (I, J)κ,P , which implies B+(r) ⊆ I . Moreover, H(r′) ∩
(I, J)κ,P = ∅ by the assumption that (I, J)κ,P 6|= r′. By construction of (I, J)κ,P , this implies J ∩B−(r) =
∅. Since (I, J) |=β r, we also conclude that I ∩ H(r) 6= ∅ and that I ∩ B−(r) = ∅. Consequently,
J |= B−(r), ai ∈ I for some ai ∈ H(r), and I |= B(r). Note also, that B−(r) 6= ∅ by definition of the
epistemic transformation. According to the construction of (I, J)κ,P , it follows that λr,i ∈ (I, J)κ,P , a
contradiction to H(r′) ∩ (I, J)κ,P = ∅.

– r′ is of the form (4): in this case, (I, J)κ,P 6|= r′ implies λr,i ∈ (I, J)κ,P and ai 6∈ (I, J)κ,P . However, by
construction λr,i ∈ (I, J)κ,P implies ai ∈ I; from the latter, again by construction, we conclude ai ∈ (I, J)κ,P ,
a contradiction.

– r′ is of the form (5): in this case, (I, J)κ,P 6|= r′ implies λr,i ∈ (I, J)κ,P and bj ∈ (I, J)κ,P . Note that
bj ∈ (I, J)κ,P iff bj ∈ I . A consequence of the latter is that I 6|= B(r), contradicting a requirement for
λr,i ∈ (I, J)κ,P (cf. the construction of (I, J)κ,P ).

– r′ is of the form (6): by the assumption that (I, J)κ,P 6|= r′, it holds that λr,k ∈ (I, J)κ,P and ai ∈ (I, J)κ,P ,
but λr,i 6∈ (I, J)κ,P . From the latter we conclude, by the construction of (I, J)κ,P , that ai 6∈ I , since all
other requirements for the inclusion of λr,i (i.e., r ∈ P , B−(r) 6= ∅, I |= B(r), and J |= B−(r)) must be
satisfied as witnessed by λr,k ∈ (I, J)κ,P . However, if ai 6∈ I , then ai 6∈ (I, J)κ,P (again by construction),
contradiction.

This concludes the proof of the fact that if (I, J) is a bi-model of P , then (I, J)κ,P |= P κ.
Part (2). Let M be a model of P κ. We prove that β(M ∩ Σκ) = (I, J) is a bi-model of P . Note

that by construction I = M ∩ Σ and J = {a | Ka ∈ M}. First, we consider any rule r in P such that
B−(r) = ∅. Then r ∈ P κ, J ∩B−(r) = ∅ and I ∩B−(r) = ∅. Hence, by Proposition 3, we need to show
that B+(r) ⊆ (M ∩ Σ) implies (M ∩ Σ) ∩H(r) 6= ∅. Since r ∈ P κ, this follows from the assumption, i.e.,
M |= P κ implies M |= r, and therefore if B+(r) ⊆M , then M ∩H(r) 6= ∅. Since r is over Σ, this proves
the claim for all r ∈ P such that B−(r) = ∅.

It remains to show that (I, J) |=β r for all r ∈ P such that B−(r) 6= ∅. Towards a contradiction assume
that this is not the case, i.e., (i) B+(r) ⊆ (M ∩Σ), (ii) J ∩B−(r) = ∅, and either (iii) (M ∩Σ)∩H(r) = ∅
or (iv) (M ∩ Σ) ∩ B−(r) 6= ∅ hold for some r ∈ P of the form (1), such that B−(r) 6= ∅. Conditions (i)
and (ii), together with M |= P κ, imply that λr,i is in M , for some 1 ≤ i ≤ l (cf. the rule of the form (3)
in the epistemic transformation of r). Consequently, ai is in M (cf. the corresponding rule of the form (4)
in the epistemic transformation of r), and hence ai ∈ (M ∩ Σ). This rules out (iii), so (iv) must hold, i.e.,
bj ∈ (M ∩ Σ), for some m + 1 ≤ j ≤ n. But then, M satisfies the body of a constraint in P κ (cf. the
corresponding rule of the form (5) in the epistemic transformation of r), contradicting M |= P κ. This
proves that there exists no r ∈ P such that B−(r) 6= ∅ and (I, J) 6|=β r, and thus concludes our proof of
(I, J) |=β r. Since r ∈ P was arbitrary, it follows that β(M ∩ Σκ) is a bi-model of P . 2

Proof of Theorem 5. Let P be a program over Σ. The proof uses the following lemmas.

Lemma 53 If M ∈ AS(P κ), then β(M ∩ Σκ) satisfies (i).
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Proof. Towards a contradiction assume that M ∈ AS(P κ) and β(M ∩ Σκ) = (I, J) does not satisfy (i).
Then, there exists a bi-model (I ′, J) of P , such that I ′ ⊂ I . By Proposition 4, (I ′, J)κ,P |= P κ. Note
that (I ′, J)κ ⊂ (M ∩ Σκ). Let S′ = {λr,i | λr,i ∈ (I ′, J)κ,P } and let S = {λr,i | λr,i ∈ M}. We show
that S′ ⊆ S. Suppose that this is not the case and assume that λr,i ∈ S′ and λr,i 6∈ S, for some r ∈ P of
the form (1) and 1 ≤ i ≤ l. By the construction of (I ′, J)κ,P , we conclude that ai ∈ I ′, I ′ |= B(r), and
J |= B−(r). Since I ′ ⊂ I , it also holds that ai ∈ I and that I |= B+(r). Consider the rule of the form
(3) of the epistemic transformation of r. We conclude that {b1, . . . , bm} ⊆ M (due to I |= B+(r)), and
that M 6|= Kc1 ∨ . . . ∨Kcn (due to J |= B−(r)). But M |= P κ, hence λr,k is in M , for some 1 ≤ k ≤ l.
However, considering the corresponding rule of the form (6) of the epistemic transformation of r, we also
conclude that λr,i ∈ M , a contradiction. Therefore S′ ⊆ S holds, and since (I ′, J)κ ⊂ (M ∩ Σκ), we
conclude that (I ′, J)κ,P ⊂M . The latter contradicts the assumption that M is an answer-set, i.e., a minimal
model, of P κ. This concludes the proof of the lemma. 2

Lemma 54 If (I, J) is a bi-model of P that satisfies (i) and (ii), then there exists some M ∈ AS(P κ), such
that β(M ∩ Σκ) = (I, J).

Proof. Let (I, J) be a bi-model of P that satisfies (i) and (ii). If (I, J)κ,P ∈ AS(P κ), then (c) holds since
β((I, J)κ,P ∩ Σκ) = (I, J). If (I, J)κ,P 6∈ AS(P κ), then there exists a minimal model, i.e. an answer
set, M ′ of P κ, such that M ′ ⊂ (I, J)κ,P . Let (I ′, J ′) = β(M ′ ∩ Σκ). Then I ′ ⊆ I and J ′ ⊆ J holds by
construction and the fact that M ′ ⊂ (I, J)κ,P . Towards a contradiction, assume that I ′ ⊂ I . We show that
then (I ′, J) is a bi-model of P . Suppose that (I ′, J) is not a bi-model of P . Then, by Proposition 3, there
exists r ∈ P , such that B+(r) ⊆ I ′, J ∩ B−(r) = ∅, and either I ′ ∩H(r) = ∅ or I ′ ∩ B−(r) 6= ∅. Note
that B+(r) ⊆ I ′ implies B+(r) ⊆ I , and since (I, J) is a bi-model of P , we conclude I ∩H(r) 6= ∅ and
I ∩B−(r) = ∅. The latter implies I ′ ∩B−(r) = ∅, hence I ′ ∩H(r) = ∅ holds. If B−(r) = ∅, then r is in
P κ and M ′ 6|= r, contradiction. Thus, B−(r) 6= ∅. However, in this case the epistemic transformation of r
is in P κ. Since J ∩B−(r) = ∅ and J ′ ⊆ J together imply J ′ ∩B−(r) = ∅, we conclude that for the rule
of the form (3) of the epistemic transformation of r, it holds that {b1, . . . , bm} ⊆M ′ (due to B+(r) ⊆ I ′),
and that M ′ 6|= Kc1 ∨ . . . ∨Kcn (due to J ′ ∩ B−(r) = ∅). Moreover M ′ |= P κ, hence λr,i is in M ′, for
some 1 ≤ i ≤ l. Considering the corresponding rule of the form (4) of the epistemic transformation of r, we
also conclude that ai ∈ M ′, a contradiction to I ′ ∩H(r) = ∅. This proves that (I ′, J) is a bi-model of P ,
and thus contradicts the assumption that (I, J) satisfies (i). Consequently, I ′ = I . Now if J ′ ⊂ J , then we
obtain a contradiction with the assumption that (I, J) satisfies (ii). Therefore also J ′ = J , which concludes
the proof of the Lemma. 2

The proof of Theorem 5 is then as follows.

Part (1). Let (I, J) be a bi-model of P that satisfies (i)-(iii). We prove that (I, J)κ ∈ SST (P ). By
Lemma 54, we conclude that there exists some M ∈ AS(P κ) such that β(M ∩ Σκ) = (I, J). It remains
to show that M is maximal canonical. Towards a contradiction assume the contrary. Then, there exists
M ′ ∈ AS(P κ) such that gap(M ′) ⊂ gap(M). Let (I ′, J ′) = β(M ′ ∩ Σκ). By Lemma 53, (I ′, J ′)
satisfies (i), and by construction since gap(M ′) ⊂ gap(M), it holds that J ′ \ I ′ ⊂ J \ I . However,
this contradicts the assumption that (I, J) satisfies (iii). Therefore, M is maximal canonical, and hence
(I, J)κ ∈ SST (P ).

Part (2). Let Iκ ∈ SST (P ). We show that β(Iκ) is a bi-model of P that satisfies (i)-(iii). Let (I, J) =
β(Iκ) and let M be a maximal canonical answer set of P κ corresponding to Iκ. Then, β(M ∩ Σκ) = (I, J)
by construction, and (I, J) satisfies (i) by Lemma 53.

Towards a contradiction first assume that (I, J) does not satisfy (iii). Then there exists a bi-model
(I ′, J ′) of P such that (I ′, J ′) satisfies (i) and J ′ \ I ′ ⊂ J \ I . Let M ′ = (I ′, J ′)κ,P and note that if
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M ′ ∈ AS(P κ), we arrive at a contradiction to M ∈ mc(AS(P κ)), since gap(M ′) ⊂ gap(M). Thus,
there exists M ′′ ∈ AS(P κ), such that M ′′ ⊂ M ′. Let (I ′′, J ′′) = β(M ′′ ∩ Σκ). We show that (I ′′, J ′) is
a bi-model of P , and thus by (i) it follows that I ′′ = I ′. Towards a contradiction, suppose that (I ′′, J ′) is
not a bi-model of P . Then, by Proposition 3, there exists r ∈ P , such that B+(r) ⊆ I ′′, J ′ ∩ B−(r) = ∅,
and either I ′′ ∩H(r) = ∅ or I ′′ ∩B−(r) 6= ∅. Note that B+(r) ⊆ I ′′ implies B+(r) ⊆ I ′, and since (I ′, J ′)
is a bi-model of P , we conclude I ′ ∩H(r) 6= ∅ and I ′ ∩ B−(r) = ∅. The latter implies I ′′ ∩ B−(r) = ∅,
hence I ′′ ∩H(r) = ∅ holds. If B−(r) = ∅, then r is in P κ and M ′′ 6|= r, contradiction. Thus, B−(r) 6= ∅.
However, in this case the epistemic transformation of r is in P κ. Since J ′ ∩ B−(r) = ∅ and J ′′ ⊆ J ′

together imply J ′′ ∩B−(r) = ∅, we conclude that for the rule of the form (3) of the epistemic transformation
of r, it holds that {b1, . . . , bm} ⊆ M ′′ (due to B+(r) ⊆ I ′′), and that M ′′ 6|= Kc1 ∨ . . . ∨ Kcn (due to
J ′′ ∩ B−(r) = ∅). Moreover M ′′ |= P κ, hence λr,i is in M ′′, for some 1 ≤ i ≤ l. Considering the
corresponding rule of the form (4) of the epistemic transformation of r, we also conclude that ai ∈ M ′′,
a contradiction to I ′′ ∩ H(r) = ∅. This proves that (I ′′, J ′) is a bi-model of P . From the assumption
that (I ′, J ′) satisfies (i), it follows that I ′′ = I ′. Therefore gap(M ′′) ⊆ gap(M ′) holds, which implies
gap(M ′′) ⊂ gap(M), a contradiction to M ∈ mc(AS(P κ)). This proves (I, J) satisfies (iii).

Next assume that (I, J) does not satisfy (ii). Then, there exists a bi-model (I, J ′) of P , such that J ′ ⊂ J .
We show that (I, J ′) satisfies (i). Otherwise, there exists a bi-model (I ′, J ′) of P , such that I ′ ⊂ I; but
then also (I ′, J) is a bi-model of P . To see the latter, assume that there exists a rule r ∈ P , such that
B(r) ⊆ I ′, J ∩ B−(r) = ∅ and either I ′ ∩H(r) = ∅ or I ′ ∩ B−(r) 6= ∅. Since J ′ ⊂ J , it then also holds
that J ′ ∩B−(r) = ∅. This contradicts the assumption that (I ′, J ′) is a bi-model of P , hence (I ′, J) |=β P .
The latter is a contradiction to the assumption that (I, J) satisfies (i), proving that (I, J ′) satisfies (i). Since
(I, J) satisfies (iii), we conclude that J ′ \ I = J \ I . Now let S′ = {λr,i | λr,i ∈ (I, J ′)κ,P } and let
S = {λr,i | λr,i ∈M}. It holds that S′ 6⊆ S (otherwise (I, J ′)κ,P ⊂M , a contradiction to M ∈ AS(P κ)),
i.e., there exists r ∈ P of the form (1) and 1 ≤ i ≤ l, such that λr,i ∈ S and λr,i 6∈ S′. From the former, since
M is a minimal model of P κ, we conclude that I |= B+(r), ai ∈ I , and J ∩B−(r) = ∅. Since J ′ ⊂ J , also
J ′ ∩B−(r) = ∅. This implies that λr,k ∈ S′, for some 1 ≤ k 6= i ≤ l (otherwise (I, J ′)κ,P does not satisfy
the rule of form (3) corresponding to r in P κ, a contradiction to (I, J ′)κ,P |= P κ). However, since ai ∈ I ,
and thus ai ∈ (I, J ′)κ,P , and since λr,k ∈ (I, J ′)κ,P , we conclude that λr,i ∈ (I, J ′)κ,P (cf. the respective
rule of form (6) of the epistemic transformation of r). This contradicts λr,i 6∈ S′, and thus proves that (I, J)
satisfies (ii). 2

A.2 Section 4

Proof of Proposition 7. Let P be a program over Σ.
Part (1). Let (I, J) be a bi-model of P , such that (I, J)κ satisfies Property N and Property K, for all

r ∈ P . We show that (I, J) is an HT-model of P . Since (I, J)κ satisfies Property N, it holds that a ∈ I
implies a ∈ J , therefore I ⊆ J , i.e., (I, J) is an HT-interpretation. For every rule r ∈ P , (I, J) |=β r implies
(I, J) 6|=β B(r), or (I, J) |=β H(r) and I |= B(r). First suppose that (I, J) 6|=β B(r). Then (I, J) 6|= B(r)
(note that for a conjunction of literals, such as B(r), the satisfaction relations do not differ). Moreover, since
(I, J)κ satisfies Property K for r, it holds that J |= r. To see the latter, let Kr denote the rule obtained from
r by replacing every a ∈ Σ occurring in r by Ka, and let KJ denote the set {Ka ∈ (I, J)κ | a ∈ Σ}. Then,
(I, J)κ satisfies Property K for r iff KJ |= Kr. Observing that KJ = {Ka | a ∈ J}, we conclude that
J |= r. This proves (I, J) |= r, if (I, J) 6|=β B(r). Next assume that (I, J) |=β H(r) and I |= B(r). We
conclude that (I, J) |= H(r) (the satisfaction relations also coincide for disjunctions of atoms). As (I, J)κ

satisfies Property K for r, it follows J |= r. This proves (I, J) |= r , for every r ∈ P ; in other words, (I, J)
is an HT-model of P .
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Part (2). Let (H,T ) be an HT-model of P . We show that (H,T )κ satisfies Property N and Property K,
for all r ∈ P . As a consequence of H ⊆ T , for every a ∈ (H,T )κ such that a ∈ Σ, it also holds that
Ka ∈ (H,T )κ, i.e., (H,T )κ satisfies Property N. Moreover, (H,T ) |= P implies T |= r, for all r ∈ P . Let
KT = {Ka | a∈T} and let Kr as above; T |= r implies KT |= Kr, for all r ∈ P . By construction of
(H,T )κ and definition of Property K for r, we conclude that (H,T )κ satisfies Property K for all r ∈ P . 2

Proof of Theorem 8. Let P be a program over Σ.
Part (1). Let (H,T ) be an HT-model of P that satisfies (i′) and (ii′). We show that (H,T )κ ∈ SEQ(P ).

Towards a contradiction, first assume that (H,T )κ 6∈ MM (HT κ(P )). Then, there exists an HT-model
(H ′, T ′) of P , such that H ′ ⊆ H , T ′ ⊆ T , and at least one of the inclusions is strict. Suppose that H ′ ⊂ H .
Then (H ′, T ) is an HT-model of P (by a well-known property of HT), a contradiction to the assumption
that (H,T ) satisfies (i′). Hence, H ′ = H and T ′ ⊂ T must hold. Moreover, by the same argument (H ′, T ′)
also satisfies (i′). But, since T ′ \ H ′ ⊂ T \ H , this is in contradiction to the assumption that (H,T )
satisfies (ii′). Consequently, (H,T )κ ∈ MM (HT κ(P )). We continue the indirect proof assuming that
(H,T )κ 6∈ mc(MM (HT κ(P ))), i.e., there exists an HT-model (H ′, T ′) of P , such that T ′ \H ′ ⊂ T \H and
(H ′, T ′)κ ∈ MM (HT κ(P )). The latter obviously implies that (H ′, T ′) satisfies (i′). Again, this contradicts
that (H,T ) satisfies (ii′), which proves that (H,T )κ ∈ SEQ(P ).

Part (2). Let Iκ ∈ SEQ(P ). We show that β(Iκ) is an HT-model of P that satisfies (i′) and (ii′). Let
β(Iκ) = (H,T ). Towards a contradiction first assume that (H,T ) is not an HT-model of P . Then by
the definition of SEQ(P ), and the fact that Iκ uniquely corresponds to sets H and T , we conclude that
Iκ 6∈ mc(MM (HT κ(P ))), i.e., Iκ 6∈ SEQ(P ); contradiction. Next, suppose that (H,T ) does not satisfy (i′).
Then, Iκ 6∈ MM (HT κ(P )), as witnessed by (H ′, T )κ for an HT-model (H ′, T ) such that H ′ ⊂ H ,
which exists if (H,T ) does not satisfy (i′). Therefore, Iκ 6∈ mc(MM (HT κ(P ))), i.e., Iκ 6∈ SEQ(P );
contradiction. Eventually assume that (H,T ) does not satisfy (ii′). Then, Iκ 6∈ mc(MM (HT κ(P ))), as
witnessed by (H ′, T ′)κ for an HT-model (H ′, T ′), such that T ′ \H ′ ⊂ T \H and (H ′, T ′) satisfies (i′)—
note that (H ′, T ′) exists if (H,T ) does not satisfy (ii′). To see that (H ′, T ′)κ is a witness for Iκ 6∈
mc(MM (HT κ(P ))), observe that either (H ′, T ′)κ ∈ MM (HT κ(P )) or there exists an HT-model (H ′, T ′′),
such that (H ′, T ′′)κ ∈ MM (HT κ(P )) and T ′′ ⊂ T ′ (which implies T ′′ \H ′ ⊂ T ′ \H ′ ⊂ T \H). This
proves that Iκ 6∈ SEQ(P ), again a contradiction. This concludes the proof that β(Iκ) is an HT-model of P
that satisfies (i′) and (ii′). 2

Proof of Theorem 9. Let P be a program over Σ, and let Iκ be an interpretation over Σκ. The proof uses
the following lemmas.

Lemma 55 If M |= PHT , then β(M ∩ Σκ) is an HT-model of P .

Proof. Let (I, J) = β(M ∩ Σκ). Since M |= P κ, (I, J) is a bi-model of P by Proposition 4. Moreover,
M ∩Σκ = (I, J)κ and (I, J)κ satisfies Property N, otherwise there is an atom a ∈M such that Ka 6∈M , a
contradiction to M |= Ka← a. Also, (I, J)κ satisfies Property K for all r ∈ P ; otherwise, if Property K
does not hold for some r ∈ P of the form (1), then M |= Kb1 ∧ . . . ∧Kbm and M 6|= Ka1 ∨ . . . ∨Kal ∨
Kc1 ∨ . . . ∨Kcn, i.e., M 6|= PHT ; contradiction. Hence by Proposition 7, (I, J) is a HT-model of P . 2

Next, we prove:

Lemma 56 If (H,T ) is an HT-model of P , then (H,T )κ,P |= PHT .

Proof. Note that every HT-model of P is a bi-model of P . Assume the contrary; then (H,T ) |= r
and (H,T ) 6|=β r, for some r ∈ P . Then, H 6|= B(r), while (H,T ) |= B(r), must hold. However,
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(H,T ) |= B(r) implies B+(r) ⊆ H and B−(r) ∩H = ∅, and therefore H |= B(r); contradiction. This
proves that (H,T ) is a bi-model of P . Consequently, (H,T )κ,P |= P κ by Proposition 4. Moreover, since
(H,T ) is an HT-model, (H,T )κ satisfies Property N (and Property K for all r ∈ P ) by Proposition 7.
Because (H,T )κ,P ∩ Σκ = (H,T )κ, this implies that (H,T )κ,P |= r, for all rules of the form Ka ← a
in PHT \ P κ (this is an obvious consequence of Property N). For the remaining rules r in PHT \ P κ,
(H,T )κ,P |= r is a simple consequence of T |= P . This proves (H,T )κ,P |= PHT . 2

Lemma 57 For every M ∈ AS(PHT ), β(M ∩ Σκ) satisfies (i′) in Theorem 8.

Proof. Towards a contradiction assume the contrary. Then there exists an HT-model (H ′, T ) of P such
that H ′ ⊂ H . Note that M ∈ AS(PHT ) implies M = β(M ∩ Σκ)κ,P . Since the latter is a model of
PHT by Lemma 56, M must be a subset thereof; however it obviously cannot be a strict subset on Σκ. By
construction of β(M ∩ Σκ)κ,P and the rules of form (6) of the epistemic transformation, we also conclude
that λr,i ∈ β(M ∩ Σκ)κ,P implies λr,i ∈ M , for any r ∈ P of the form (1) and 1 ≤ i ≤ l. This proves
M = β(M ∩ Σκ)κ,P . Now considerM ′ = (H ′, T )κ,P . Then,M ′ ⊂M by construction, andM ′ |= PHT by
Lemma 56. This is a contradiction to the assumption that M ∈ AS(PHT ), and thus proves that β(M ∩ Σκ)
satisfies (i′). 2

Lemma 58 For every HT-model (H,T ) of P that satisfies (i′) of Theorem 8, there exists some M ∈
AS(PHT ) such that gap(M) ⊆ gap((H,T )κ).

Proof. Since (H,T )κ,P |= PHT by Lemma 56, there exists M ∈ AS(PHT ), such that M ⊆ (H,T )κ,P .
To prove the lemma, it suffices to show that M ∩ Σ = H . Assume the contrary; then by (d) there exists an
HT-model (H ′, T ′) of P , such that H ′ ⊂ H and T ′ ⊆ T . However, then (H ′, T ) |= P , which contradicts
the assumption that (H,T ) satisfies (i′). 2

The proof of Theorem 9 is then as follows.
(⇐) Suppose that Iκ ∈{M ∩ Σκ |M ∈mc(AS(PHT ))}. We prove Iκ ∈ SEQ(P ) via Theorem 8. Let

M ∈ mc(AS(PHT )), such that Iκ = M ∩ Σκ, and let (I, J) = β(M ∩ Σκ). Then, (I, J) is an HT-model
of P by Lemma 55 and (I, J) satisfies (i′) in Theorem 8 by Lemma 57. We prove that (I, J) satisfies (ii′) in
Theorem 8. Towards a contradiction, assume that this is not the case, then there exists an HT-model (H,T ) of
P , such that T \H ⊂ J \ I and (H,T ) satisfies (i′). According to Lemma 58, there exists M ′ ∈ AS(PHT ),
such that gap(M ′) ⊆ gap((H,T )κ), which implies gap(M ′) ⊂ gap(M) due to T \ H ⊂ J \ I . This
contradicts the assumption that M ∈ mc(AS(PHT )), and thus proves that (I, J) satisfies (ii′) in Theorem 8.
We conclude that Iκ ∈ SEQ(P ).

(⇒) Suppose that Iκ ∈ SEQ(P ). We prove Iκ ∈{M ∩ Σκ | M ∈ mc(AS(PHT ))}. Let (H,T ) =
β(Iκ). By Theorem 8, (H,T ) is an HT-model of P that satisfies (i′) and (ii′). We show that there
exists M ∈ mc(AS(PHT )) such that β(M ∩ Σκ) = (H,T ). Since (H,T )κ,P |= PHT , there exists
M ∈ AS(PHT ) such that M ⊆ (H,T )κ,P . Since (H,T ) satisfies (i′), it holds that M ∩Σ = H . Moreover,
M ∩ Σκ ⊂ (H,T )κ contradicts the fact that (H,T ) satisfies (ii′), because then β(M ∩ Σκ) = (H,T ′)
is an HT-model of P , such that T ′ \ H ⊂ T \ H and (H,T ′) satisfies (i′) due to Lemma 57. Hence,
β(M ∩ Σκ) = (H,T ). It remains to show that M ∈ mc(AS(PHT )). If this is not the case, then some
HT-model (H ′, T ′) of P exists such that T ′ \ H ′ ⊂ T \ H . Since (H ′, T ′) = β(M ′ ∩ Σκ) for some
M ′ ∈ AS(PHT ), we conclude by Lemma 57 that (H ′, T ′) satisfies (i′), which again leads to a contradiction
of the fact that (H,T ) satisfies (ii′). This proves that M ∈ mc(AS(PHT )). As M ∩Σκ = Iκ, we conclude
that Iκ ∈ {M ∩ Σκ |M ∈ mc(AS(PHT ))}. 2
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Proof of Proposition 10. Let P be a program over Σ. If P has a model M , then (M,M) is an HT-model
of P . Therefore HT κ(P ) 6= ∅, which implies MM (HT κ(P )) 6= ∅, and thus mc(MM (HT κ(P ))) 6= ∅. We
conclude that SEQ(P ) 6= ∅, i.e., P has a semi-equilibrium model. 2

Proof of Proposition 11. Let P be a coherent program over Σ, and let Y ∈ AS(P ). Then (Y, Y ) is an
HT-model of P that satisfies (i′) in Theorem 8, since it is in equilibrium. Moreover, it trivially satisfies also
(ii′) because Y \ Y = ∅. Hence, (Y, Y )κ ∈ SEQ(P ).

As P is coherent, there exists (T, T ) ∈ HT (P ) that satisfies (i′) in Theorem 8 and (trivially) (ii′).
Hence, gap(Iκ) = ∅ for all Iκ ∈ SEQ(P ). Moreover, β(Iκ) is of the form (Y, Y ), and Y ∈ AS(P ). 2

A.3 Section 5

Proof of Proposition 14. If (X,Y ) ∈ SEQS(P ), then there exists some (I, J) ∈ SEQ(bS(P )) such that
(X,Y ) ∈ SEQ(PS(I, J)). We will prove that (I, J) = (X,Y )|S . Obviously I ⊆ J ⊆ S. Moreover because
(X,Y ) |= a for each a ∈ I , we have a ∈ X for all a ∈ I , so I ⊆ X; because (X,Y ) |= {← not a | a ∈ J},
then a ∈ Y for all a ∈ J , so J ⊆ Y ; and because (X,Y ) |= {← a | a ∈ S \ J}, then a 6∈ Y for all
a ∈ S \ J , so (S \ J) ∩ Y = ∅. In particular we obtain that I ⊆ X ∩ S and J ⊆ Y ∩ S. We know that
(X,Y ) |= PS(I, J). So if we consider a ∈ X∩S, then a ∈ H(r) for some rule r ∈ P \bS(P )∪{a | a ∈ I}.
But because a ∈ S, it follows that r 6∈ P \ bS(P ), so r ∈ {a | a ∈ I}. Therefore a ∈ I , that is I = X ∩ S.
Moreover if we consider an atom a ∈ Y ∩S, then a ∈ Y and a ∈ S, and because (S \J)∩Y = ∅, we obtain
that a ∈ J , that is J = Y ∩ S. In conclusion, we have that (X ∩ S, Y ∩ S) = (I, J) is a semi-equilibrium
model of bS(P ). 2

Proof of Lemma 16. Suppose that (X,Y ) is an HT-model of PS(I, J). Hence, (X,Y ) |= P \ bS(P ). It
remains to show that (X,Y ) |= r for every r ∈ bS(P ). Suppose that r has the form (1). By assumption
(I, J) ∈ SEQ(bS(P )), hence we conclude that (I, J) |= bS(P ).

If (I, J) |= ai for some ai ∈ H(r), then ai ∈ I and because (X,Y ) |= PS(I, J), we have (X,Y ) |= ai,
i.e. (X,Y ) |= r.

If we assume that (I, J) 6|= b1 ∧ ... ∧ bm ∧ ¬c1 ∧ ... ∧ ¬cn, then there exists some bj ∈ B+(r) such that
(I, J) 6|= bj or some ck ∈ B−(r) such that (I, J) 6|= ¬ck, that is, by definition of HT-satisfaction that bj 6∈ I
respectively ck ∈ J .

In the first case, bj is not in the head of any other rule in P \ bS(P ), for which bj 6∈ X and so (X,Y ) |= r.
In the second case, we have in PS(I, J) the rule← not ck; this implies ck ∈ Y , and therefore, also in

this case, (X,Y ) |= r. 2

Proof of Proposition 15. Let (X,Y ) ∈ SEQS(P ). Then there exists (I, J) ∈ SEQ(bS(P )) such that
(X,Y ) ∈ SEQ(PS(I, J)). By Lemma 16, (X,Y ) is an HT-model of P . So, by definition of semi-equilibrium
model, remains to prove the h-minimality and the gap-minimality of (X,Y ). Suppose by contradiction that
there exists some (X ′, Y ) |= P with X ′ ⊂ X . So that (X ′, Y ) |= tS(P ) and (X ′, Y ) |= bS(P ). By this last
sentence we also obtain that (X ′∩S, Y ∩S) |= bS(P ), but by Proposition 14, (X∩S, Y ∩S) ∈ SEQ(bS(P )).
So by the h-minimality of the semi-equilibrium model (X ∩ S, Y ∩ S) of the bottom of P , we have that
(X ′∩S) 6⊂ (X∩S). But becauseX ′ ⊂ X implies that (X ′∩S) ⊆ (X∩S), then necessarilyX ′∩S = X∩S.
So that (X ′ ∩ S, Y ∩ S) = (X ∩ S, Y ∩ S) = (I, J). Therefore

(X ′ ∩ S, Y ∩ S) |= {a | a ∈ I} ∪ {← not a | a ∈ J} ∪ {← a | a ∈ S \ J}.

In particular (X ′, Y ) |= {a | a ∈ I} ∪ {← not a | a ∈ J} ∪ {← a | a ∈ S \ J}. And because
(X ′, Y ) |= tS(P ), we conclude that (X ′, Y ) |= PS(I, J) against the h-minimality of (X,Y ) respect to
PS(I, J). Similarly, suppose by contradiction that there exists some (X ′, Y ′) |= P and

44



(1) there is no (X ′′, Y ′) |= P such that X ′′ ⊂ X ′ and
(2) Y ′ \X ′ ⊂ Y \X .

Moreover, we suppose that
(3) gap(X,Y ) is minimal among the gaps of the HT-models that satisfy (1) and (2).
Because (X ′, Y ′) |= P , it holds that (X ′, Y ′) |= tS(P ) and (X ′, Y ′) |= bS(P ). From this we obtain that

(X ′ ∩ S, Y ′ ∩ S) |= bS(P ) and by condition (2) we obtain that

(Y ′ ∩ S) \ (X ′ ∩ S) = (Y ′ \X ′) ∩ S ⊆ (Y \X) ∩ S = (Y ∩ S) \ (X ∩ S).

Moreover (X ′, Y ′)|S satisfies the h-minimality with respect to bS(P ). In fact if by contradiction there
exists (I ′, Y ′ ∩ S) |= bS(P ), such that I ′ ⊂ X ′ ∩ S, then (I ′ ∪ (X ′ \ S), Y ′) |= P and I ′ ∪ (X ′ \ S) ⊂
(X ′ ∩ S) ∪ (X ′ \ S) = X ′ against the condition (1). By Proposition 14, (X ∩ S, Y ∩ S) ∈ SEQ(bS(P )),
so we have necessarily that (Y ′ ∩ S) \ (X ′ ∩ S) = (Y ∩ S) \ (X ∩ S) = J \ I . Otherwise (X,Y )|S
could not be a semi-equilibrium model of bS(P ), because (X ′, Y ′)|S contradicts the gap-minimality of
(X,Y )|S . Therefore (X ′, Y ′)|S ∈ SEQ(bS(P )), because if there exists (Î , Ĵ) |= bS(P ), that satisfies
the h-minimality property and Ĵ \ Î ⊂ (Y ′ ∩ S) \ (X ′ ∩ S), then Ĵ \ Î ⊂ (Y ∩ S) \ (X ∩ S), and
therefore (X,Y )|S 6∈ SEQ(bS(P )), contrary to what is assumed. Now we show that (X ′, Y ′) must be a semi-
equilibrium model of PS(X ′ ∩ S, Y ′ ∩ S). First since (X ′, Y ′) |= tS(P ) and (X ′, Y ′)|S ∈ SEQ(bS(P )),
it follows that (X ′, Y ′) |= PS(X ′ ∩ S, Y ′ ∩ S). We prove the h-minimality of (X ′, Y ′) with respect to
PS(X ′ ∩ S, Y ′ ∩ S). If by contradiction there exists (X̂, Y ′) |= PS(X ′ ∩ S, Y ′ ∩ S) with X̂ ⊂ X ′, then, by
Lemma 16, (X̂, Y ′) |= P against the hypothesis (1). Finally we prove the gap-minimality of (X ′, Y ′) respect
to PS(X ′ ∩ S, Y ′ ∩ S). If by contradiction there exists (X̂, Ŷ ) |= PS(X ′ ∩ S, Y ′ ∩ S), that satisfies the
h-minimality property and, moreover, Ŷ \ X̂ ⊂ Y ′ \X ′, then there exists (X̂, Ŷ ) |= P (by Lemma 16) that
satisfies the h-minimality property and Ŷ \ X̂ ⊂ Y ′ \X ′, against the hypothesis (3). In conclusion we have
proved that (X ′, Y ′) ∈ SEQ(PS(X ′ ∩ S, Y ′ ∩ S)) and since hypothesis (2), Y ′ \X ′ ⊂ Y \X , it follows
that (X,Y ) would not be a semi-equilibrium model relative to S. And so we come to a contradiction, so a
supposed (X ′, Y ′) can not exist. Therefore (X,Y ) satisfies the gap-minimality property respect to P , so that
(X,Y ) ∈ SEQ(P ). 2

Proof of Proposition 17. Let (X,Y ) ∈ SEQ(P ) and (X,Y )|S ∈ SEQ(bS(P )). To demonstrate that
(X,Y ) ∈ SEQS(P ), first we will prove that (X,Y ) is a semi-equilibrium model of PS(X ∩ S, Y ∩ S).
Since (X,Y ) ∈ SEQ(P ), we obtain in particular that (X,Y ) |= tS(P ). Now because X ∩ S ⊆ X
then (X,Y ) |= {a | a ∈ X ∩ S}, because Y ∩ S ⊆ Y then (X,Y ) |= {← not a | a ∈ Y ∩ S},
and because (S \ (Y ∩ S)) ∩ Y = ∅ then (X,Y ) |= {← a | a ∈ S \ (Y ∩ S)}. So that (X,Y ) is
an HT-model of PS(X ∩ S, Y ∩ S). So it remains to prove the h-minimality and the gap-minimality of
(X,Y ) as regards to PS(X ∩ S, Y ∩ S). If, by contradiction, we suppose that there exists X ′ such that
X ′ ⊂ X and (X ′, Y ) |= PS(X ∩ S, Y ∩ S), then, by Lemma 16, (X ′, Y ) |= P and this contradicts
the h-minimality of (X,Y ) as regards to P . Similarly if, by contradiction, we assume that there exists
(X ′, Y ′) |= PS(X ∩ S, Y ∩ S) that satisfies the h-minimality property and Y ′ \ X ′ ⊂ Y \ X , then by
Lemma 16, we obtain that (X ′, Y ′) |= P and this contradicts the gap-minimality of (X,Y ) as regards to
P . Finally, it must be shown that there is no (X̂, Ŷ ) ∈ SEQ(PS(I, J)) with (I, J) ∈ SEQ(bS(P )), such
that gap(X̂, Ŷ ) ⊂ gap(X,Y ). In fact if, by contradiction, there exists such a (X̂, Ŷ ), then (X̂, Ŷ ) |= P
(by Lemma 16), (X̂, Ŷ ) satisfies the h-minimality property respect to P and gap(X̂, Ŷ ) ⊂ gap(X,Y ); i.
e. (X,Y ) does not satisfy the gap-minimality property respect to P , against the hypothesis. Therefore, in
conclusion, (X,Y ) ∈ SEQS(P ). 2

Proof of Corollary 19. By Theorem 18, SEQS(P ) = {(X,Y ) ∈ SEQ(P ) | (X,Y )|S ∈ SEQ(bS(P ))}.
As SEQ(P ) 6= ∅, by Proposition 11 SEQ(P ) = EQ(P ), and SEQ(bS(P )) = EQ(bS(P )); by Proposition 1
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and the identity (2) (i.e., by identity (11), it follows that SEQS(P ){(X,Y ) ∈ EQ(P ) | (X,Y )|S ∈
EQ(bS(P ))} = EQ(P ). As for any positive program P , EQ(P ) = {(M,M) | M ∈ MM (P )}, the result
follows. 2

Proof of Proposition 20. If P is constraint-free, then P has some model, hence also bS(P ) (⊆ P ) has
some model, and thus by Proposition 10, SEQ(bS(P )) 6= ∅. For any (I, J) ∈ SEQ(bS(P )), the program
PS(I, J) also has a model, e.g. J ∪ (Σ \ S). Thus, SEQ(PS(I, J)) 6= ∅ by Proposition 10, and hence it
follows SEQ(PS) 6= ∅. 2

Proof of Theorem 22. We proceed by induction on the length n ≥ 1 of the splitting sequence. If
n = 1, then we have S = (S1) and S′ = ∅, so SEQS(P ) = SEQS1(P ) and, by Theorem 18, we
obtain that (X,Y ) ∈ SEQS(P ) if and only if (X,Y ) ∈ SEQ(P ) and (X,Y )|S ∈ SEQ(bS(P )), that is
(X,Y )|S1 ∈ SEQ(bS1(P )). We assume that the statement is valid for a splitting sequence of length n− 1
and consider a splitting sequence S = (S1, ..., Sn) of length n. As usual, we put S′ = (S2, . . . , Sn). Then
(X,Y ) ∈ SEQS(P ) if and only if there exists (I1, J1) ∈ SEQ(bS1(P )) such that (X,Y ) ∈ SEQS′(P1)
and (X,Y ) is a maximal canonical HT-interpretation. Applying the induction hypothesis to (X,Y ) ∈
SEQS′(P1), we know that (X,Y ) ∈ SEQ(P1) and (X,Y )|Sk

∈ SEQ(bSk
(Pk−1)), for k = 2, . . . , n. Now

(X,Y ) ∈ SEQ(P1) with (I1, J1) ∈ SEQ(bS1(P )) and (X,Y ) is a maximal canonical HT-interpretation
is equivalent, by definition, to (X,Y ) ∈ SEQS1(P ). So that, by Theorem 18, (X,Y ) ∈ SEQ(P ) and
(X,Y )|S1 ∈ SEQ(bS1(P )). In conclusion we have demonstrated that (X,Y ) ∈ SEQS(P ) if and only if
(X,Y ) ∈ SEQ(P ) and (X,Y )|Sk

∈ SEQ(bSk
(Pk−1)), for some Pk−1, for k = 1, . . . , n. 2

Proof of Corollary 26. This is immediate from Proposition 25 and Corollary 23, given that as well-known
EQ(P ) 6= ∅ for every stratified program. 2

B Section 6

Proof of Theorem 28. The proof of uses the following lemmas.

Lemma 59 Let P be a program and let S = (S1, ..., Sn) be a splitting sequence of P . We let as above
P0 = P and Pk = (Pk−1)

Sk(Ik, Jk), where (Ik, Jk) ∈ SEQ(bSk
(Pk−1)), with k = 1, ..., n. Furthermore,

we let Ak = {a|a ∈ Ik} ∪ {← not a|a ∈ Jk} ∪ {← a|a ∈ Sk \ Jk}. Then

Pk = P \ bSk
(P ) ∪Ak

for k = 1, ..., n.

Proof . We will prove this statement by induction on k ≥ 1. If k = 1, we obtain by definition that

P1 = (P0)
S1(I1, J1) = P0 \ bS1(P0) ∪A1 = P \ bS1(P ) ∪A1.

We assume that the statement is true for k = j − 1 and consider Pj . By definition we have that
Pj = (Pj−1)

Sj (Ij , Jj) = Pj−1 \ bSj (Pj−1) ∪ Aj . Now we can applying the inductive hypothesis on Pj−1
and we obtain that

Pj = (P \ bSj−1(P ) ∪Aj−1) \ bSj (P \ bSj−1(P ) ∪Aj−1) ∪Aj .

Since Sj−1 ⊆ Sj , we have that bSj (Aj−1) = Aj−1, and so

Pj = (P \ bSj−1(P ) ∪Aj−1) \ (bSj (P \ bSj−1(P )) ∪Aj−1) ∪Aj
= (P \ bSj−1(P )) \ bSj (P \ bSj−1(P )) ∪Aj .
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Moreover since bSj−1(P ) ⊆ bSj (P ), we can conclude that

Pj = (P \ bSj−1(P )) \ (bSj (P ) \ bSj−1(P )) ∪Aj = P \ bSj (P ) ∪Aj .
2

Lemma 60 Let P be a program. Let S = (S1, ..., Sn) be a splitting sequence of P . Let P0 = P and let
Pk and (Ik, Jk) for k = 1, ..., n − 1 be defined as above. If (X,Y ) ∈ SEQ(Sk+1,...,Sn)(Pk), then Ik ⊆ X ,
Jk ⊆ Y and (Sk \ Jk) ∩ Y = ∅ for k = 1, ..., n− 1.

Proof . Let (X,Y ) ∈ SEQ(Sk+1,...,Sn)(Pk). We remember that Pk = (Pk−1)
Sk(Ik, Jk), where (Ik, Jk) ∈

SEQ(bSk
(Pk−1)), for k = 1, ..., n and P0 = P . By Theorem 22 we have that (X,Y ) ∈ SEQ(Pk) and by

Lemma 59,

Pk = P \ bSk
(P ) ∪ {a | a ∈ Ik} ∪ {← not a | a ∈ Jk} ∪ {← a | a ∈ Sk \ Jk}.

So that Ik ⊆ X , Jk ⊆ Y and (Sk \ Jk) ∩ Y = ∅. 2

Lemma 61 Let P be a program. Let S = (S1, ..., Sn) be a splitting sequence of P such that At(P ) = Sn.
If (X,Y ) ∈ SEQ(S1,...,Sn)(P ), then there exists (Ik, Jk) ∈ SEQ(bSk

(Pk−1)) for k = 1, ..., n such that

(X,Y ) = (I1 ∪ (I2 \ I1) ∪ ... ∪ (In \ In−1), J1 ∪ (J2 \ J1) ∪ ... ∪ (Jn \ Jn−1))

with (Ik \ Ik−1) ⊆ (Jk \ Jk−1) ⊆ (Sk \ Sk−1), for k = 2, ..., n.

Proof . We proceed by induction on the length n ≥ 1 of the splitting sequence. If n = 1, then At(P ) = S1
and (X,Y ) ∈ SEQS1(P ) imply that there exists some (I1, J1) ∈ SEQ(bS1(P )) such that (X,Y ) ∈
SEQ(PS1(I1, J1)), but PS1(I1, J1) = P \ bS1(P ) ∪A1 = A1, so that

SEQ(PS1(I1, J1)) = SEQ(A1)

= SEQ({a | a ∈ I1} ∪ {← not a | a ∈ J1} ∪ {← a | a ∈ S1 \ J1}) = {(I1, J1)},

that is (X,Y ) = (I1, J1).
Now we suppose that the statement is valid for splitting sequence of length n−1 and we consider (X,Y ) ∈

SEQ(S1,...,Sn)(P ). Then there exists (I1, J1) ∈ SEQ(bS1(P )) such that (X,Y ) ∈ SEQ(S2,...,Sn)(P1) and
At(P1) = Sn, so by the inductive hypothesis there exists (Ik, Jk) ∈ SEQ(bSk

(Pk−1)) for k = 2, ..., n such
that (X,Y ) = (I2 ∪ (I3 \ I2) ∪ ... ∪ (In \ In−1), J2 ∪ (J3 \ J2) ∪ ... ∪ (Jn \ Jn−1)) with Ik \ Ik−1 ⊆
Jk \ Jk−1 ⊆ Sk \ Sk−1, for k = 3, ..., n. Moreover, by Lemma 60, I1 ⊆ X , J1 ⊆ Y and (S1 \ J1) ∩ Y = ∅
and because (I2, J2) ∈ SEQ(bS2(P1)) we obtain that I1 ⊆ I2, J1 ⊆ J2 and (S1 \ J1) ∩ J2 = ∅. These last
results imply that I2 \ I1 ⊆ J2 \ J1 ⊆ S2 \ S1. 2

Lemma 62 Let P be a program and let S ⊆ At(P ) such that both S and At(P ) \ S are splitting sets of P .
If for each constraint r, At(r) ⊆ S or At(r) ⊆ At(P ) \ S, then

SEQ(P ) = SEQS(P ).

Proof . The inclusion SEQS(P ) ⊆ SEQ(P ) follows from Proposition 15. So we have just to prove that
SEQ(P ) ⊆ SEQS(P ).

Let (X,Y ) ∈ SEQ(P ). We want to prove that (X ∩ S, Y ∩ S) ∈ SEQ(bS(P )).
We know that (X,Y ) |= bS(P ). As S is a splitting set of P , At(bS(P )) ⊆ S and so (X ∩ S, Y ∩ S) |=

bS(P ).
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Now we prove the claim showing that (X ∩ S, Y ∩ S) satisfies h-minimality and gap-minimality.
If by contradiction some I ⊂ X ∩S exists such that (I, Y ∩S) |= bS(P ), then X ′ = I ∪ (X ∩ (At(P ) \

S)) ⊂ X and (X ′, Y ) |= P which contradicts the h-minimality of (X,Y ).
Similarly, if by contradiction, some (I, J) |= bS(P ) exists such that (I, J) satisfies h-minimality and

J \ I ⊂ (Y ∩S) \ (X ∩S), then having set X ′ = I ∪ (X ∩ (At(P ) \S)) and Y ′ = J ∪ (Y ∩ (At(P ) \S)),
we obtain that (X ′, Y ′) |= P , satisfies the h-minimality and Y ′ \ X ′ ⊂ Y \ X in contradiction to the
gap-minimality of (X,Y ).

Therefore (X∩S, Y ∩S) ∈ SEQ(bS(P )). Then, by Theorem 18, (X,Y ) ∈ SEQS(P ); hence SEQ(P ) =
SEQS(P ). 2

For any setsM andM′ of HT-models, define their productM×M′ as the set of HT models given by
M×M′ = {(X ∪X ′, Y ∪ Y ′) | (X,Y ) ∈M, (X ′, Y ′) ∈M′}.

Lemma 63 Let P be a program in which each constraint r fulfills either At(r) ⊆ S or At(r) ⊆ At(P ) \ S.
If both S and At(P ) \ S are splitting sets of P , then

SEQS(P ) = SEQ(bS(P ))× SEQ(tS(P )).

Proof . If SEQ(bS(P )) = ∅, then

SEQ(bS(P ))× SEQ(tS(P )) = ∅

and
SEQS(P ) = mc

( ⋃
(I,J)∈SEQ(bS(P ))

SEQ(PS(I, J))
)

= ∅.

Let (I, J) ∈ SEQ(bS(P )). For each rule r ∈ bS(P ), no atom of r is in some rule of tS(P ) and vice
versa, that is At(bS(P )) ∩At(tS(P )) = ∅. Hence

SEQ(tS(P ) ∪ {a | a ∈ I} ∪ {← not a | a ∈ J} ∪ {← a | a ∈ S \ J})
= {(X,Y ) | X = X1 ∪ I, Y = Y1 ∪ J, (X1, Y1) ∈ SEQ(tS(P ))}
= SEQ(tS(P ))× {(I, J)}.

Then

SEQS(P ) = mc
( ⋃

(I,J)∈SEQ(bS(P ))

SEQ(tS(P ))× {(I, J)}
)

= mc (SEQ(bS(P ))× SEQ(tS(P )))

= SEQ(bS(P ))× SEQ(tS(P )).

2

Proof of Proposition 30. Follows immediately from Lemmas 62 and 63. 2

Lemma 64 Let P be a program without cross-constraints. Let (C1, ..., Cn) and (C1, ..., Ci−1, Ci+1, Ci,
Ci+2, ..., Cn) be two topological orderings of SCC(P ). If we put Sk = C1 ∪ ... ∪ Ck for k = 1, ..., n and
S′i = Si−1 ∪ Ci+1 then

bS′i(P \ bSi−1(P )) = bSi+1(P \ bSi(P )).
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Proof . In general we know that bSi(P ) \ bSi−1(P ) = bSi(P \ bSi−1(P )). Hence it is sufficient to prove that
bSi+1(P ) \ bSi(P ) = bS′i(P ) \ bSi−1(P ).

Let r ∈ P , and assume that r ∈ bSi+1(P ) and r 6∈ bSi(P ). If r is a constraint, then At(r) ∩ Ci+1 6= ∅.
As P has no cross-constraints, it follows that At(r) ∩ Ci = ∅. If r is not a constraint, then there exists some
a ∈ H(r) such that a ∈ Ci+1. But because there is no edge between Ci and Ci+1, we obtain again that
At(r) ∩ Ci = ∅. Therefore r ∈ bSi−1∪Ci+1(P ) and clearly r 6∈ bSi−1(P ).

Conversely, assume that r ∈ bSi−1∪Ci+1(P ) and r 6∈ bSi−1(P ). Then r ∈ bSi−1∪Ci+1(P ) ⊆ bSi+1(P ).
Moreover r ∈ bSi−1∪Ci+1(P ) implies that At(r) ∩ Ci = ∅, and because r 6∈ bSi−1(P ), it follows that
r 6∈ bSi(P ). 2

Lemma 65 Let P be a program without cross-constraints. Let (C1, ...Cn) and (C1, ..., Ci−1, Ci+1, Ci,
Ci+2, ..., Cn) be two topological orderings of SCC(P ). If we put Sk = C1 ∪ ... ∪ Ck for k = 1, ..., n and
S′i = Si−1 ∪ Ci+1 then

SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P ) = SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sn)(P ).

Proof . Let (X,Y ) ∈ SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P ). Since At(P ) = C1 ∪ ... ∪ Cn = Sn, by
Lemma 61 we obtain that

(X,Y ) = (I1 ∪ (I2 \ I1) ∪ ... ∪ (In \ In−1), J1 ∪ (J2 \ J1) ∪ ... ∪ (Jn \ Jn−1))

where (Ik, Jk) ∈ SEQ(bSk
(Pk−1)) for k = 1, ..., n, with

(Ik \ Ik−1) ⊆ (Jk \ Jk−1) ⊆ (Sk \ Sk−1) = Ck

for k = 2, ..., n.
First we show that

(X,Y )|S′i ∈ SEQ(bS′i(Pi−1)).

We know that

(X,Y )|S′i = (X,Y )|Si−1∪Cj+1 = (Ii−1 ∪ (Ii+1 \ Ii), Ji−1 ∪ (Ji+1 \ Ji)).

Moreover, using Lemma 64, we obtain

bS′i(Pi−1) = bSi−1∪Cj+1(Pi−1) = bSi−1∪Ci+1(P \ bSi−1(P ) ∪Ai−1)
= bSi−1∪Ci+1(P \ bSi−1(P )) ∪Ai−1
= bSi+1(P \ bSi(P )) ∪Ai−1.

And we note that

bSi+1(Pi) = bSi+1(P \ bSi(P ) ∪Ai)
= bSi+1(P \ bSi(P )) ∪Ai−1 ∪ (Ai \Ai−1).

Now in the program bSi+1(Pi) both Si−1 ∪ Ci+1 and Ci are splitting sets and in particular

bSi−1∪Ci+1(bSi+1(Pi)) = bSi+1(P \ bSi(P )) ∪Ai−1

and
bCi(bSi+1(Pi)) = Ai \Ai−1.
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Therefore by Proposition 30 we obtain that

SEQ(bSi+1(Pi)) = SEQ(bSi+1(P \ bSi(P )) ∪Ai−1)× SEQ(Ai \Ai−1).

So we have that

SEQ(bSi+1(Pi)) = SEQ(bSi−1∪Cj+1(Pi−1))× {(Ii \ Ii−1, Ji \ Ji−1)},

and since

(X,Y )|Si+1 = (Ii−1 ∪ (Ii \ Ii−1) ∪ (Ii+1 \ Ii), Ji−1 ∪ (Ji \ Ji−1) ∪ (Ji+1 \ Ji)) ∈ SEQ(bSi+1(Pi)),

it follows
(Ii−1 ∪ (Ii+1 \ Ii), Ji−1 ∪ (Ji+1 \ Ji)) ∈ SEQ(bSi−1∪Cj+1(Pi−1)).

By Theorem 22, we know that if (X,Y ) ∈ SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P ), then

(X,Y ) ∈ SEQ(P ), (X,Y )|S1 ∈ SEQ(bS1(P )), . . . , (X,Y )|Si−1 ∈ SEQ(bSi−1(Pi−2)),

(X,Y )|Si ∈ SEQ(bSi(Pi−1)), (X,Y )|Si+1 ∈ SEQ(bSi+1(Pi)),

(X,Y )|Si+2 ∈ SEQ(bSi+2(Pi+1)), . . . (X,Y )|Sn ∈ SEQ(bSn(Pn−1)),

We want to prove that (X,Y ) ∈ SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sn)(P ). That is, by Theorem 22:

(X,Y ) ∈ SEQ(P ), (X,Y )|S1 ∈ SEQ(bS1(P )), . . . (X,Y )|Si−1 ∈ SEQ(bSi−1(Pi−2)),

(X,Y )|S′i ∈ SEQ(bS′i(Pi−1)), (X,Y )|Si+1 ∈ SEQ(bSi+1(P \ bS′i(P ) ∪Ai−1 ∪ (Ai+1 \Ai))),
(X,Y )|Si+2 ∈ SEQ(bSi+2(Pi+1)), . . . , (X,Y )|Sn ∈ SEQ(bSn(Pn−1)),

So it remains to prove that

(X,Y )|Si+1 ∈ SEQ(bSi+1(P \ bS′i(Pi−1) ∪Ai−1 ∪ (Ai+1 \Ai))).

We know that

bSi+1(P\bS′i(P ) ∪Ai−1 ∪ (Ai+1 \Ai))
= bSi+1(P \ bSi−1∪Ci+1(P )) ∪Ai−1 ∪ (Ai+1 \Ai)
= bSi(P \ bSi−1(P )) ∪Ai−1 ∪ (Ai+1 \Ai)
= bSi(P \ bSi−1(P )) ∪Ai−1) ∪ (Ai+1 \Ai)
= bSi(Pi−1) ∪ (Ai+1 \Ai).

Now in this program both Si and Ci+1 are splitting sets and in particular

bSi(bSi(Pi−1) ∪ (Ai+1 \Ai)) = bSi(Pi−1)

and
bCi+1(bSi(Pi−1) ∪ (Ai+1 \Ai)) = Ai+1 \Ai.

Therefore by Proposition 30 we obtain that

SEQ(bSi+1(P\bS′i(Pi−1) ∪Ai−1 ∪ (Ai+1 \Ai)))
= SEQ(bSi(Pi−1))× SEQ(Ai+1 \Ai)
= SEQ(bSi(Pi−1))× {(Ii+1 \ Ii, Ji+1 \ Ji)}.
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Now since (Ii, Ji) ∈ SEQ(bSi(Pi−1)), we obtain that

(Ii+1, Ji+1) = (X,Y )|Si+1 ∈ SEQ(bSi+1(P \ bS′i(Pi−1) ∪Ai−1 ∪ (Ai+1 \Ai))).

In conclusion, we have proved that

SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P ) ⊆ SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sn)(P ).

The proof of the reverse inclusion is similar. 2

Theorem 28 is then proven as follows. Let (Ci1 , ..., Cin) ∈ O(SG(P )). We define a function

t(Ci1
,...,Cin )

: O(SG(P )) −→ O(SG(P )).

Let (Cj1 , ..., Cjn) ∈ O(SG(P )). If Cir = Cjr for r = 1, ..., l, Cil+1
6= Cjl+1

and there exists k + 1 > l + 1
such that Cjk+1

= Cil+1
, then

t(Ci1
,...,Cin )

(Cj1 , ..., Cjn) = t(Ci1
,...,Cin )

(Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cjk , Cil+1
, Cjk+2

, ..., Cjn)

= (Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cil+1
, Cjk , Cjk+2

, ..., Cjn),

else t(Ci1
,...,Cin )

(Cj1 , ..., Cjn) = (Cj1 , ..., Cjn) = (Ci1 , ..., Cin). This function is well-defined because
there are no edges from Cim to Cil+1

for m = l + 2, ..., n. That is there are no edges from Cjk to
Cil+1

, therefore (Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cil+1
, Cjk , Cjk+2

, ..., Cjn) is another topological ordering of
SCC(P ). Moreover for each (Cj1 , ..., Cjn) ∈ O(SG(P )), there exists some finite N such that

tN(Ci1
,...,Cin )

(Cj1 , ..., Cjn) = (Ci1 , ..., Cin).

During the proof, in order not to introduce additional symbols, we shall denote the splitting sequence Si with
(Ci1 , ..., Cin) and Sj with (Cj1 , ..., Cjn).

LetN be such that tN(Ci1
,...,Cin )

(Cj1 , ..., Cjn) = (Ci1 , ..., Cin). We will prove the theorem using induction
on N . If N = 1, then t(Ci1

,...,Cin )
(Cj1 , ..., Cjn) = (Ci1 , ..., Cin), i.e. (Cj1 , ..., Cjn) and (Ci1 , ..., Cin)

differ at most by the exchange of two consecutive strongly connected components. Then, by Lemma 65,
SEQ(Ci1

,...,Cin )(P ) = SEQ(Cj1
,...,Cjn )(P ). Now we suppose that the theorem is valid for topological

orderings (Cs1 , ..., Csn) such that tN−1(Ci1
,...,Cin )

(Cs1 , ..., Csn) = (Ci1 , ..., Cin). We consider (Cj1 , ..., Cjn)

such that tN(Ci1
,...,Cin )

(Cj1 , ..., Cjn) = (Ci1 , ..., Cin). By definition of the function t(Ci1
,...,Cin )

, we know that

t(Ci1
,...,Cin )

(Cj1 , ..., Cjn) = (Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cil+1
, Cjk , Cjk+2

, ..., Cjn).

Therefore, by Lemma 65, we have that

SEQ(Cj1
,...,Cjn )(P ) = SEQt(Ci1

,...,Cin )(Cj1
,...,Cjn )(P ).

But now tN−1(Ci1
,...,Cin )

(t(Ci1
,...,Cin )

(Cj1 , ..., Cjn)) = (Ci1 , ..., Cin) such that, by the induction hypothesis, we
obtain that

SEQt(Ci1
,...,Cin )(Cj1

,...,Cjn )(P ) = SEQ(Ci1
,...,Cin )(P ).

In conclusion, we have proved that SEQ(Cj1
,...,Cjn )(P ) = SEQ(Ci1

,...,Cin )(P ). 2

Proof of Theorem 32. First we observe that for every splitting set S of a program P , we can always write
S as the union of some SCCs of P . More in detail, if SCC(P ) = {C1, ..., Cn}, then we can assume that
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S = C1 ∪ ... ∪ Ck, where C1, ..., Ck are consecutive in some topological ordering (C1, ..., Ck, ..., Cn) of
SCC(P ).

By definition, we have that
M SCC(P ) = SEQ(S1,...,Sn)(P ),

where Sj = ∪ji=1Ci, for 1 ≤ j ≤ n; note that S = Sk.
If we explicate the computation of SEQ(S1,...,Sn)(P ) up to k-th union, we obtain

M SCC(P ) = mc
( ⋃
Mk∈Mk

SEQ(Sk+1,...,Sn)(P \ bSk
(P ) ∪Mk)

)
(19)

whereMk is last in a sequenceMi, 1 ≤ i ≤ k of setsMi of HT-models Mi = (Ii, Ji), over Si, such that
M1 = SEQ(bS1(P )) andMi+1 = mc(

⋃
Mi∈Mi

SEQ((bSi+1(P ) \ bSi(P )) ∪Mi), 1 ≤ i < k, where in
abuse of notation ”∪Mi” stands for ∪{a | a ∈ Ii} ∪ {← not a | a ∈ Ji} ∪ {← a | a ∈ Si \ Ji}. Note that
all Mi 6= M ′i ∈Mi have incomparable gaps, i.e., gap(Mi) 6⊆ gap(M ′i).

Now we show that the setMk coincides with M SCC(bS(P )). Indeed, by definition, we know that

M SCC(bS(P )) = SEQ(S1,...,Sk)(bS(P )).

Therefore, applying k-times the definition of semi-equilibrium models relative to a splitting sequence, we
obtain

SEQ(S1,...,Sk)(bS(P )) = mc
( ⋃
M ′k∈M

′
k

SEQ(bS(P ) \ bSk
(P ) ∪M ′k)

)
(20)

where M′k and M ′k are analogously defined to Mk and Mk using bS(P ) instead of P , i.e., M′1 =
SEQ(bS1(bS(P ))) andM′i+1 = mc(

⋃
M ′i∈M′i

SEQ((bSi+1(bS(P )) \ bSi(bS(P ))) ∪M ′i), 1 ≤ i < k. As
bSi(bS(P )) = bSi(P ) for each i, theMi and theM′i coincide; as bS(P ) = bSk

(P ), we thus obtain from
(20)

SEQ(S1,...,Sk)(bS(P )) = mc
( ⋃
Mk∈Mk

SEQ(Mk)
)

=
⋃

Mk∈Mk

Mk =Mk;

here we use that the Mk have incomparable gaps. This proves the claim thatMk = M SCC(bS(P )).
To prove the result, it remains by (19) to show that for each Mk ∈Mk,

SEQ(Sk+1,...,Sn)(P \ bS(P ) ∪Mk) = M SCC(P \ bS(P ) ∪Mk).

We observe that the programs Q = P \ bS(P ) ∪Mk and P have the same atoms but in general different
SCCs. However it is easy to see that every atom in a ∈ Sk induces a SCC Ca = {a} w.r.t. Q, and thus
Sk = Ca1 ∪ · · · ∪Ca` where Sk = {a1, . . . , a`}. Furthermore, Q contains only constraints r such that either
At(Q) ⊆ Sk or At(Q) ∩ Sk = ∅. As (Ca1 , ..., Ca` , Ck+1, ...Cn) is a topological ordering of SCC(Q), we
obtain

M SCC(Q) = SEQ(Sa1 ,...,Sa`
,Sk+1,...,Sn)(Q) = SEQ(Sk+1,...,Sn)(Q).

where Sai =
⋃
j≤iCaj . The last equality can be seen by noting that, for each j = 1, ..., `, we have

SEQ(bSaj
(Q)) = {Mk|Saj

} (where Mk|Saj
denotes the restriction of Mk to Saj ) and thus for each

(Xj , Yj) ∈ SEQ(bSaj
(Q)),

Q \ bSaj
(Q) ∪ (Xj , Yj) = (Q \Mk|Saj

) ∪ (Xj , Yj) = Q.
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In conclusion, by replacing in Equation (19) the SEQ-model Mk ∈ Mk with (I, J) ∈ M SCC(bSk
(P ))

and SEQ(Sk+1,...,Sn)(P \ bSk
(P ) ∪Mk) with M SCC(P \ bSk

(P ) ∪ (I, J)) and reminding that Sk = S and
PS(I, J) = P \ bSk

(P ) ∪ (I, J), we have proved that

M SCC(P ) = mc
( ⋃

(I,J)∈MSCC(bS(P ))

M SCC(P \ bS(P ) ∪ (I, J))
)
.

2

Proof of Theorem 33. For the proof of Theorem 33, we use the following lemmas.

Lemma 66 Let P be a program. Let MJC(P ) = {J1, ..., Jm}. Let (J1, ..., Ji−1, Ji, Ji+1, Ji+2, ..., Jm)
and (J1, ..., Ji−1, Ji+1, Ji, Ji+2, ..., Jm) be two topological orderings. If we put Sk = J1 ∪ ... ∪ Jk for
k = 1, ...,m and S′i = Si−1 ∪ Ji+1 then

bS′i(P \ bSi−1(P )) = bSi+1(P \ bSi(P )).

Proof . In general we know that bSi(P ) \ bSi−1(P ) = bSi(P \ bSi−1(P )). So that is sufficient to prove that
bSi+1(P ) \ bSi(P ) = bS′i(P ) \ bSi−1(P ).

Let r ∈ P . We assume that r ∈ bSi+1(P ) and r 6∈ bSi(P ).
If r is not a constraint, then there exists some a ∈ H(r) such that a ∈ Ji+1. But because there is no edge

among Ji and Ji+1, we obtain that At(r) ∩ Ji = ∅. Therefore r ∈ bSi−1∪Ji+1(P ) and clearly r 6∈ bSi−1(P ).
If r is a constraint then there exists a ∈ (B+(r) ∪B−(r)) ∩ Ji+1. If, by contradiction, we assume that

there exists some b ∈ (B+(r) ∪B−(r)) ∩ Ji, then there exist Ki,Ki+1 ∈ SCC(P ) such that Ki+1 ⊆ Ji+1

and Ki ⊆ Ji with r ∈ CKi,Ki+1(P ). But because there is no edge among Ji and Ji+1, then there exists a
topological ordering of strongly connected components of P that are in Ji and Ji+1, such that Ki precedes
Ki+1. So there exists (C1, ..., Cn) ∈ O(P ) in which Cl = Ki and Cl+1 = Ki+1 for some l = 1, ..., n− 1
and moreover At(r) ⊆ C1 ∪ ... ∪ Cl+1. Then (Ki,Ki+1) is a joinable pair and therefore Ki,Ki+1 are
joinable components, but this contradicts the maximality of Ji and Ji+1. So that (B+(r) ∪B−(r)) ∩ Ji = ∅.
That is r ∈ bSi−1∪Ji+1(P ) and clearly r 6∈ bSi−1(P ).

Conversely we assume that r ∈ bSi−1∪Ci+1(P ) and r 6∈ bSi−1(P ). Then r ∈ bSi−1∪Ci+1(P ) ⊆ bSi+1(P ).
Moreover r ∈ bSi−1∪Ci+1(P ) implies that At(r) ∩ Ci = ∅, and because r 6∈ bSi−1(P ), then r 6∈ bSi(P ). 2

Lemma 67 Let P be a program. LetMJC(P ) = {J1, ..., Jm}. Let (J1, ..., Ji−1, Ji, Ji+1, Ji+2, ..., Jm)
and (J1, ..., Ji−1, Ji+1, Ji, Ji+2, ..., Jm) be two topological orderings. If we put Sk = J1 ∪ ... ∪ Jk for
k = 1, ...,m and S′i = Si−1 ∪ Ji+1 then

SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sm)(P ) = SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sm)(P ).

Proof . The proof is mutatis mutandis the same as that of Lemma 65, and one identifies bS′i(P \ bSi−1(P ))
and bSi+1(P \ bSi(P )) using Lemma 66 instead of Lemma 62. 2

The proof of Theorem 33 the same as that of Theorem 28, but uses Lemma 67 instead of Lemma 65. 2

Proof of Theorem 35. The proof is very similar to the one of Theorem 32: under the premise, the MJCs
which form S respectively the SCCs constituting them are in the initial segment of some topologic ordering,
like the SCCs in the proof of Theorem 32. Thus the same line of argumentation applies. 2
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C Section 7

C.1 Hardness results for semi-equilibrium semantics

Several results about Problem MCH and INF for disjunctive program under semi-equilibrium model semantics
(S = (At(P ))) can be shown using a reduction from deciding the validity of a quantified Boolean formula
(QBF) of the form

Φ = ∃Z∀Y ∃X.E(X,Y, Z)

where X = {x1 . . . xr}, Y = {y1 . . . ys} and Z = {z1 . . . zt}We may assume without loss of generality that
E(X,Y, Z) =

∧m
i=1(li1 ∨ li2 ∨ li3) where each lij is a literal over X ∪ Y ∪ Z (i.e., 3-CNF form). We define

a program P0 with the following rules:

1. p← l∗i1, l
∗
i2, l
∗
i3, where l∗ij =

{
v, if lij = v
v, if lij = ¬v and v ∈ X ∪ Y ∪ Z;

2. x← p and x← p for each x ∈ X;

3. y ∨ y for each y ∈ Y ;

4. x ∨ x for each x ∈ X .

We assume for the moment that Z is void (i.e., Z = ∅); then one can show the following property [14]:

Some M ∈ MM (P0) exists s.t. p ∈M iff ¬(∀Y ∃X.E(X,Y )) is true. (21)

As P0 is positive, SEQ(P0) = {(M,M) |M ∈ MM (P0)}; it follows from this that brave reasoning from the
SEQ-models of a positive disjunctive program, i.e., deciding P |=b,t

SEQ p, is ΣP
2 -hard; furthermore, cautious

reasoning P |=c,f
SEQ p, is ΠP

2 -hard.
Now we construct a new program P1 that is obtained by adding a fresh atom q in each rule head of P0

and the following rules:

5. p′ ← p and

6. ← not p′.

It is easy to see that {q} is a minimal model of P1. Now the following property holds:

({q} , {q, p′}) ∈ SEQ(P1) if and only if ∀Y ∃X.E(X,Y ) is true. (22)

Clearly, the program is stratified; consequently, Problem MCH under SEQ-semantics is ΠP
2 -hard for disjunc-

tive and stratified disjunctive programs, which proves the hardness part of item (ii) in Theorem 36.
Eventually, we consider the target case in which Z 6= ∅. We construct a final program P given by the

union of P1 with the following rules:

7. z ∨ z for each z ∈ Z and

8. ← z, not bz and← z, not bz for each z ∈ Z where bz and bz are fresh atoms.
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Intuitively, the effect of these rules is that in each SEQ-model (I, J), either bz or bz but not both must be
contained in gap(I, J), for each z ∈ Z; this serves to emulate quantification over Z. For each Z ′ ⊆ Z, the
HT-interpretation (IZ , JZ) = ({bz | z ∈ Z ′} ∪ {q}, {q, p′} ∪ {bz | z ∈ Z \ Z ′}) is a HT-model of P ; it will
be a SEQ-model of P precisely if ∀Y ∃X.E(X,Y, Z = Z ′) is true. Formally, one can show:

Some (I, J) ∈ SEQ(P ) exists s.t. p′ ∈ J \ I iff Φ = ∃Z∀Y ∃X.E(X,Y, Z) is true. (23)

Note that the program P is stratified; it follows that brave reasoning under SEQ-semantics is ΣP
3 -hard

for disjunctive and stratified disjunctive programs; this proves the respective hardness parts of item (i)
in Theorem 37. For cautious reasoning from disjunctive and stratified disjunctive programs under SEQ-
semantics, ΠP

3 -hardness of item (ii) in Theorem 37 is shown by a slight extension of the reduction, which is
carried out in Subsection C.2 to derive this result for fixed truth value v.

C.2 Hardness results for Problem INF with fixed truth value

C.2.1 Brave reasoning

The construction in Section 7.2 for normal, stratified normal and hcf programs uses bt, but in no SEQ-model
any atom is true (all rules are constraints); thus we can add b← not a and ask for b about the truth value f ,
and add further c← not b and ask for c about the truth value t.

For disjunctive programs, we consider the ΣP
3 -hardness proof for brave reasoning under SEQ-semantics

in Section C.1. Then for the program P constructed from the QBF Φ and the particular atom q, we have that
P |=b,t

SEQ q iff the QBF Φ evaluates to true, and P |=b,t
SEQ q is equivalent to P |=b,bt

SEQ p
′. Furthermore, q has

never value bt in the SEQ-models of the program P ; if we let P ′ = P ∪ {q′ ← not q}, then P ′ |=b,f
SEQ q

′

iff P |=b,t
SEQ q. So for each fixed value v, brave inference from the SEQ-models of a (stratified) disjunctive

program is ΣP
3 -hard; this trivially generalizes to SEQ-models relative to arbitrary splitting sequences S.

C.2.2 Cautious reasoning

For fixed truth value v = bt, the cautious inference problem is for SEQ-models easier than for a truth value
given in the input:

Proposition 68 Given a program P and an atom a, deciding whether P |=c,bt
SEQ a is (i) in coNP for each of

normal, normal stratified, and hcf P and (ii) in Πp
2 for disjunctive P .

This holds because in this case, P 6|=c,bt
SEQ a iff some h-minimal HT-model (X,Y ) of P exists such that

a /∈ Y \ X; such a h-minimal model can be guessed and verified in polynomial time in case (i) resp. in
polynomial time with an NP oracle in case (ii).

For the other truth values, the construction in Section 7.2 for normal, stratified normal and hcf programs
uses truth value f for cautious reasoning, and as in no SEQ-model any atom is true, we can add b← not a
and ask whether b has cautiously value t; if we add another split layer with a rule b← not b, not a (such that
S = (S1, S2) and b ∈ S2 \ S1), then we can ask whether b has cautiously value bt.

Regarding disjunctive programs, we had above in the programs P and P ′ for brave reasoning with fixed
truth values t and f query atoms q resp. q′ whose truth values are opposite in the SEQ-models of P ′ and
always true or false; so we immediately obtain the ΠP

3 -hardness for cautious reasoning. If we add another
split layer with b← not b, p similarly as above, then we can ask whether b has cautiously value bt.
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C.3 Constructing and recognizing canonical splitting sequences

Proof of Proposition 40. Let P be a program. First we prove that conditions (i) and (ii) in Definition 12
imply that there is no path from K1 to K2 and vice versa. By contradiction, first suppose that there is a
path from K1 to K2, i.e. there exist K ′1, . . . ,K

′
m ∈ SCC(P ) such that such that K1 = K ′1, K ′m = K2

and (K ′i,K
′
i+1) ∈ ESG for 1 ≤ i < m. As in each topological ordering (C1, . . . , Cn) ∈ O(SG(P ))

K ′i+1 must precede K ′i, for 1 ≤ i < m, it follows that K2 precedes K1, which contradicts condition (i).
Otherwise, suppose that there exists some path from K2 to K1. Let K ′1, . . . ,K

′
m ∈ SCC(P ) be an arbitrary

such path, i.e., K ′1 = K2, (K ′i,K
′
i+1) ∈ ESG for 1 ≤ i < m and K ′m = K1. By condition (ii) we know

that (K2,K1) 6∈ ESG . Hence m > 2 and K ′m−1 6= K1, K ′m−1 6= K2; thus in every topological ordering
(C1, . . . , Cn) ∈ O(SG(P )), K1 precedes K ′m−i and K ′m−i precedes K2, which contradicts condition (i).

Now we prove that the disconnectedness hypothesis implies conditions (i) and (ii). As there is no path
from K2 to K1, condition (ii) trivially holds. Moreover for each topological ordering of SCC(P ) there exist
maximal (possibly empty) sets Ai ⊆ SCC(P ) such that for each K ′i ∈ Ai, K ′i precedes Ki, i = 1, 2. Because
there is no path from K1 to K2, it follows that K2 6∈ A1 and because there is no path from K2 to K1, it
follows that K1 6∈ A2. Therefore we can construct a topological ordering in which all strongly connected
components in A1 ∪ A2 precede K1 (this is possible because if there exists some K ∈ A2 such that K1

precedes K, then K1 precedes K and K precedes K2; this contradicts the hypothesis that no path from K2

to K1 exists), and K1 precedes immediately K2, i.e., condition (i) holds (this is possible because there is no
K ∈ A1 such that K2 precedes K). 2

Proof of Corollary 41. (⇒) If (K1,K2) is a joinable pair witnessed by r, then by Proposition 40 K1

and K2 are disconnected in SG(P ); i.e., they are incomparable in the partial order on SCC(P ) induced by
SG(P ). By condition (iii), At(r) ⊆ C1 ∪ · · · ∪ Cs+1 holds with Cs = K1 and Cs+1 = K2; as every SCC
C 6= K1,K2 such that At(r) ∩ C 6= ∅ occurs in C1, . . . , Cs−1, no path in SG(P ) from C can reach K1 or
K2; consequently, K1 and K2 are maximal SCCs in SG(P ) such that At(r) ∩ C 6= ∅

(⇐) Suppose without loss of generality that K1 = C1 and K2 = C2. Then, K1 and K2 must be
disconnected; hence by Proposition 40,K1 andK2 satisfy condition (i) and (ii) of a joinable pair. Furthermore,
as all Ci, Cj , 1 ≤ i 6= j ≤ l, must be pairwise disconnected, by extending the argument in the proof of
Proposition 40, we can build from a topological ordering ≤= (C1, . . . , Cn) of SG(P ) another topological
ordering of SG(P ) in which all SCCs in A =

⋃l
i=1Ai ∪ {C3, . . . , Cl} precede K1 and K1 immediately

precedes K2, where Ai = {K ∈ SCC(P ) | K < Ci}; this is possible since no K ∈ A exists such that K2

precedes K. As A ∪ {C1, C2} must contain all SCCs C such that At(r) ∩ C 6= ∅, it follows that condition
(iii) holds; hence (K1,K2) is a joinable pair. 2

Proof of Theorem 42. By Corollary 41, the joinable pairs (K1,K2), K1 6= K2 witnessed by constraint r
are given by all Cri , C

r
j from Cr1 , . . . , C

r
l computed in Step 2, 1 ≤ i 6= j ≤ l; hence, this collection is joinable,

if l > 1; if l = 1, K1 = Cr1 , K2 = Cr1 is trivially joinable. Thus, in Step 3 Cr ∈ JC (P ) holds. Furthermore,
merging J1 and J2 in Step 4 results in a set J1 ∪ J2 ∈ JC (P ): by an inductive argument, all Criji that have
been merged into Ji, i = 1, 2 are joinable; thus if J1 ∩ J2 6= ∅, then some J ∈ J1 ∩ J2 exists such that all
(Cr1j1 , C) and (C,Cr2j2 ) are joinable pairs; hence all Crj merged into J1∪J2 are joinable and J1∪J2 ∈ JC (P ).
Finally, suppose that after Step 4MJC(P ) 6= MC ∪ (SCC(P ) \ NMI ); by construction of MC and the
maximality condition onMJC(P ), it follows that some J ′ ∈MJC(P ) and J ∈ MC ∪ (SCC(P ) \NMI
exist such that J ⊂ J ′. From Corollary 41, it follows that all SCCs C merged into J ′ are joinable and that
J ∈ MC must hold; otherwise, J is a non-joinable SCC, which implies J = J ′. Furthermore, some SCC Crj
merged into J must be joinable to some SCC C merged into J ′ but not into J ; as the joinable pair (Crj , C)
is witnessed by some constraint r′, Crj , C were merged into some J ′′inMC ; but this means J ∩ J ′′ 6= ∅,
and hence Step 4 for MC would not have been completed, a contradiction. ThusMJC(P ) = MC ∪NMI

56



holds. The correctness of the constructed JG(P ) is then obvious.
Regarding the time complexity, we note the following:
In Step 1, DG(P ), SCC(P ) and SG(P ) are constructable in linear time;
We can compute the SCCs Cr1 , . . . , C

r
l efficiently, e.g. by using a stratified program P r with the following

rules:

1. rj ← , for each Cj ∈ VSG such that Cj ∩At(r) 6= ∅;

2. rj ← ri and n max rj ← ri, for each (Ci, Cj) ∈ ESG ;

3. max rj ← rj , not n max rj , for each Ci ∈ VSG .

Informally, the atom rj encodes reachability of the component Cj in the SCC-graph from a component that
contains atoms from the constraint r; max rj and n max rj are used to single out the topmost (maximal)
reached components using double negation. The single answer set of Pr yields then the desired maximal
components Cr1 , . . . , C

r
l ; as Pr can be built and evaluated in linear time, Step 2 is feasible in linear time for

each r.
Step 3 is clearly feasible in linear time; also Step 4 (iterative merging the J1, J2) is feasible (if properly

done) in linear time, and similarly Step 5 givenMJC(P ) and SG(P ).
Thus in total,MJC(P ) and JG(P ) are computable in time O(cs·‖P‖), which proves the result. 2

D Section 8

Proof of Theorem 43. The proof proceeds as follows. We first show that (1) the models of P E correspond to
the HT-models (X,Y ) of P via ·E ; next, we establish that (2) for every minimal model P E , the corresponding
HT-model of P is h-minimal and (3) that every SEQ-model of P is among the models in (2), i.e., {(X,Y )E |
(X,Y ) ∈ SEQ(P )} ⊆ MM (P E). As the E-violation set V(I) of any model I = (X,Y )E of P E corresponds
to the gap of (X,Y ) (precisely, V(I) = Egap(X,Y )), it follows that I ∈ MM (P E) has a ⊆-minimal
E-violation set, i.e., is an evidential stable model of P , iff (X,Y ) is a SEQ-model of P .

As for (1), it is readily seen that for every HT-model (X,Y ) of P , I = (X,Y )E = X ∪ EY is a model of
P E : all rules (2) are satisfied as Y |= P , and all rules (3) as X ⊆ Y . Finally for the rules (1), as (X,Y ) |= r,
either H(r) ∩X 6= ∅, or B+(r) 6⊆ Y (which implies B+(r) 6⊆ X), or B−(r) ∩ Y 6= ∅; hence I satisfies the
rules (1). The proof of the converse, for every model I of P E , β(I) is a HT-model of P , is similar.

Regarding (2), if I ∈ MM (P E), in particular no model J ⊂ I of P E exists such that I \Σ = J \Σ; thus
if β(I) = (X,Y ), no HT-model (X ′, Y ) of P exists such that X ′ ⊂ X .

As for (3), towards a contradiction assume that some (X,Y ) ∈ SEQ(P ) fulfills I = (X,Y )E /∈
MM (P E). Hence, some J = (X ′, Y ′)E ∈ MM (P E) exists such that J ⊂ I . As X ′ ⊆ X , Y ′ ⊆ Y , and
(X,Y ) is h-minimal, it follows that Y ′ ⊂ Y . As P Y ⊆ P Y ′ it follows that X ′ |= P Y ; since X ∈ MM (P Y )
and X ′ ⊆ X , it follows X ′ = X . Therefore, gap(X ′, Y ′) ⊂ gap(X,Y ); as by (2) (X ′, Y ′) is h-minimal,
(X,Y ) /∈ SEQ(P ), which is a contradiction. This proves the result. 2 2

Proof of Proposition 49. (⊆) If M = (X,Y ) is a SEQ-model of Pwf , then M is a h-minimal model
of Pwf and gap(M) ⊆ gap(WF (Pwf )) = gap(WF (P )). Corollary 48 implies that M v WF (Pwf )) =
WF (P ) = (I, J), and thus Y ⊆ J . By antimonotonicity of γP (.), we have γP (Y ) ⊇ γP (J) = I , and
thus γPwf (Y ) = γP (Y ) ∪ I = γP (Y ) = X . Thus M is also a h-minimal model of P . If M were not a
SEQ-model of P , then by Corollary 48 some refinement M ′ of WF (P ) with gap(M ′) ⊂ gap(M) would be
a SEQ-model of P . But M ′ would then be a h-minimal model of Pwf and contradict that M is a SEQ-model
of Pwf . Thus M is a SEQ-model of P .
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(⊇). Let M be a SEQ-model of P such that gap(M) ⊆ gap(WF (P )). Then by Corollary 48 M refines
WF (P ) and thus is clearly a model of Pwf , and moreover h-minimal. If M were not a SEQ-model of Pwf ,
then some SEQ-model M ′ of Pwf with smaller gap exists; we can then as in the case (⊆) infer that M ′ is
also a h-minimal model of P , which contradicts that M is a SEQ-model of P . 2

Proof of Proposition 50. Consider any splitting sequence S = (S1, S2, ...) of the program P and let
M = (X,Y ) be any SEQ-model of P such that M v WF (P ) (by Corollary 48 such an M exists). Let
M1 = M |S1 and P1 = bS1(P ).

Then, M1 is a HT-model of P1 and moreover h-minimal for P1 (for otherwise, M would not be h-
minimal for P : we could make X on S1 smaller, as we can keep the same valuation for the atoms in Σ \ S1;
note that P Y is positive and atoms from S1 occur in tS1(P ) only in rule bodies). Furthermore, we have
M1 vWF (P )|S1 . Now some SEQ-model N1 = (X1, Y1) of P1 must exist such that gap(N1) ⊆ gap(M1);
as gap(M1) ⊆ gap(WF (P )|S1), Corollary 48 and Lemma 51 imply that N1 v WF (P1) (observe that
WF (P )|S1 = WF (P1), which follows from items 1 and 2 of Lemma 51).

If we consider the program P2 = PS1(X1, Y1), then by an inductive argument on the length of the
splitting sequence it has some SCC-model N2 w.r.t. S′ = (S2, ..., Sn) such that N2 vWF (P2), provided
WF (P2) exists; however, PS1(X1, Y1) adds a constraint ← not a for each a ∈ Y1 \ X1, and as a does
not occur in any rule head of P2, WF (P2) does not exist if X1 ⊂ Y1. To address this, we use in the
argument a variant of the transformation PS1(X1, Y1), denoted P̂S1(X1, Y1), that adds a rule a ← not a
for each a ∈ Y1 to PS1(X1, Y1); clearly, PS1(X1, Y1) and P̂S1(X1, Y1) have the same splitting sets and
the same SEQ-models w.r.t. any splitting sequence; let P̂2 = P̂S1(X1, Y1), Then we claim that WF (P̂2)
exists and WF (P̂2) v WF (P ) holds. Indeed, consider the constraint-free part P ′ of P ; then WF (P ′) =
WF (P ) and, if Q′ denotes the (constraint-free) program for P ′ according to item 2 of Lemma 51, we have
WF (Q′) = WF (P ′) = WF (P ). If we add to Q′ all constraints of P , then the resulting program Q fulfills
WF (Q) = WF (P ). If we modify Q by (i) adding from P̂S1(X1, Y1) all facts a ∈ X1 and all constraints
{a ← not a | a ∈ Y1} ∪ {← a | a ∈ S1 \ Y1}, and (ii) remove all rules a ← not a such that a ∈ S1 \ Y1,
the resulting program Q′′ is such that WF (Q′′) vWF (Q) = WF (P ) if WF (Q′′) exists, as assigning any
atoms in gap(WF (P )) true or false does not affect the already assigned atoms. But as every constraint r in
P has some body literal that is false in WF (P ), this holds also for Q′′, and thus WF (Q′′) exists. Now we
note that Q′′ = P̂2; this proves the claim.

Consequently, N2 is an SCC-model of P̂2 and N2 vWF (P̂2) vWF (P ) holds. Now the SEQS-models
of P are, by definition,

SEQS(P ) = mc
( ⋃

(X,Y )∈SEQ(bS1
(P ))

SEQS′(PS1(X,Y )
)

= mc
( ⋃

(X,Y )∈SEQ(bS1
(P ))

SEQS′(P̂S1(X,Y )
)
.

If the model N2 appears in this set, then it is an SEQS-model of P that refines WF (P ) and proves the first
claim of the proposition. Otherwise, some SEQS-model N ′ of P must exist such that gap(N ′) ⊂ gap(N2);
as N ′ is a SEQ-model of P and gap(N ′) ⊆ gap(WF (P )), it follows from Corollary 48 that N ′ vWF (P ),
and also in this case an SEQS-model of P that refines WF (P ) exists; this proves the first claim of the
proposition. As for the second claim, by Corollary 48 every SEQ-model M of P , and thus in particular every
SEQS-model M of P such that gap(M) ⊆ gap(WF (P )) satisfies M v WF (P ); thus if we let M in the
argument above be an arbitrary SEQS-model of P , we arrive at N2 = M and thus the second claim holds.
This proves the result. 2

58



References
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Masuch, M., Pólos, L. (eds.) International Conference on Logic at Work: Knowledge Representation
and Reasoning Under Uncertainty. Lecture Notes in Computer Science, vol. 808, pp. 91–105. Springer
(1992)

60



[32] Pereira, L.M., Pinto, A.M.: Revised stable models - a semantics for logic programs. In: Bento, C.,
Cardoso, A., Dias, G. (eds.) Proc. 12th Portuguese Conference on Artificial Intelligence (EPIA 2005).
Lecture Notes in Computer Science, vol. 3808, pp. 29–42. Springer (2005)

[33] Pereira, L.M., Pinto, A.M.: Approved models for normal logic programs. In: Dershowitz, N., Voronkov,
A. (eds.) Proc. 14th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2007). Lecture Notes in Computer Science, vol. 4790, pp. 454–468. Springer (2007)

[34] Pereira, L.M., Pinto, A.M.: Layered models top-down querying of normal logic programs. In: Gill, A.,
Swift, T. (eds.) Proc. 11th International Symposium on Practical Aspects of Declarative Languages,
(PADL 2009). Lecture Notes in Computer Science, vol. 5418, pp. 254–268. Springer (2009)

[35] Przymusinski, T.C.: On the declarative semantics of deductive databases and logic programs. In: Minker
[26], pp. 193–216

[36] Przymusinski, T.C.: Stable semantics for disjunctive programs. New Generation Computing 9, 401–424
(1991)
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