
I N F S Y S
R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

A MODEL BUILDING FRAMEWORK FOR

ANSWER SET PROGRAMMING WITH

EXTERNAL COMPUTATIONS

THOMAS EITER MICHAEL FINK

GIOVAMBATTISTA IANNI THOMAS KRENNWALLNER

CHRISTOPH REDL PETER SCHÜLLER

INFSYS RESEARCH REPORT 15-01

JANUARY 2015

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 15-01, JANUARY 2015

A MODEL BUILDING FRAMEWORK FOR ANSWER SET

PROGRAMMING WITH EXTERNAL COMPUTATIONS

Thomas Eiter1 Michael Fink1 Giovambattista Ianni2

Thomas Krennwallner1 Christoph Redl1 Peter Schüller3

Abstract. As software systems are getting increasingly connected, there is a need for equipping
nonmonotonic logic programs with access to external sources that are possibly remote and may con-
tain information in heterogeneous formats. To cater for this need, HEX programs were designed
as a generalization of answer set programs with an API style interface that allows to access arbi-
trary external sources, providing great flexibility. Efficient evaluation of such programs however
is challenging, and it requires to interleave external computation and model building; to decide
when to switch between these tasks is difficult, and existing approaches have limited scalability
in many real-world application scenarios. We present a new approach for the evaluation of logic
programs with external source access, which is based on a configurable framework for dividing the
non-ground program into possibly overlapping smaller parts called evaluation units. The latter will
be processed by interleaving external evaluation and model building using an evaluation graph and a
model graph, respectively, and by combining intermediate results. Experiments with our prototype
implementation show a significant improvement compared to previous approaches. While designed
for HEX-programs, the new evaluation approach may be deployed to related rule-based formalisms
as well.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
email: {eiter,fink,tkren,redl}@kr.tuwien.ac.at.

2Università della Calabria, 87036 Rende (CS), Italy; email: ianni@mat.unical.it.
3Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey; email: peter.schuller@marmara.edu.tr

Acknowledgements: This research has been supported by the Austrian Science Fund (FWF) project P24090.
Preliminary results of this work have been presented at LPNMR 2011 (12).

Copyright c© 2015 by the authors

2 INFSYS RR 15-01

Contents

1 Introduction 4

2 Language Overview 5
2.1 HEX Syntax . 5
2.2 HEX Semantics . 7
2.3 Using HEX-Programs for Knowledge Representation and Reasoning 9

2.3.1 Computation Outsourcing . 9
2.3.2 Knowledge Outsourcing . 10
2.3.3 Combinations . 10

3 Extensional Semantics and Atom Dependencies 10
3.1 Restriction to Extensional Semantics for HEX External Atoms 10
3.2 Atom Dependencies . 11
3.3 Safety Restrictions . 13

4 Rule Dependencies and Generalized Rule Splitting Theorem 15
4.1 Rule Dependencies . 15
4.2 Splitting Sets and Theorems . 16

5 Decomposition and Evaluation Techniques 18
5.1 Evaluation Graph . 18

5.1.1 Evaluation Graph Splitting . 20
5.1.2 First Ancestor Intersection Units . 21

5.2 Interpretation Graph . 22
5.2.1 Join . 24

5.3 Answer Set Graph . 25
5.3.1 Complete Answer Set Graphs . 26

5.4 Answer Set Building . 27
5.4.1 Model Streaming . 29

6 Implementation 29
6.1 System Architecture . 29
6.2 Heuristics . 31
6.3 Experimental Results . 32

6.3.1 Multi-Context Systems (MCS) . 33
6.3.2 Reviewer Selection (RS) . 34
6.3.3 Summary . 35

7 Related Work and Discussion 35
7.1 Related Work . 35

7.1.1 External Sources . 35
7.1.2 Rule Dependencies . 36
7.1.3 Modularity . 36
7.1.4 Splitting Theorems . 36

INFSYS RR 15-01 3

7.2 Possible Optimizations . 37

8 Conclusion 38
8.1 Outlook . 38

A Proofs 38

B Example Run of Algorithm 2 43

C On Demand Model Streaming Algorithm 44

D Overview of Liberal Domain-Expansion Safety 46

4 INFSYS RR 15-01

1 Introduction

Motivated by a need for knowledge bases to access external sources, extensions of declarative KR for-
malisms have been conceived that provide this capability, which is often realized via an API-style interface.
In particular, HEX programs (19) extend nonmonotonic logic programs under the stable model semantics
with the possibility to bidirectionally access external sources of knowledge and/or computation. E.g., a rule

pointsTo(X,Y)← &hasHyperlink [X](Y), url(X)

might be used for obtaining pairs of URLs (X,Y), where X actually links Y on the Web, and &hasHyper -
link is an external predicate construct. Besides constants (i.e., values) as above, also relational knowledge
(predicate extensions) can flow from external sources to the logic program and vice versa, and recursion
involving external predicates is allowed under safety conditions. This facilitates a variety of applications
that require logic programs to interact with external environments, such as querying RDF sources using
SPARQL (43), default rules on ontologies (29; 10), complaint management in e-government (55), mate-
rial culture analysis (37), user interface adaptation (54), multi-context reasoning (5), or robotics and plan-
ning (50; 28), to mention a few.

Despite the absence of function symbols, an unrestricted use of external atoms leads to undecidability,
as new constants may be introduced from the sources; in iteration, this can lead to an infinite Herbrand uni-
verse for the program. However, even under suitable restrictions like liberal domain-expansion safety (15)
that avoid this problem, the efficient evaluation of HEX-programs is challenging, due to aspects like non-
monotonic atoms and recursive access (e.g., in transitive closure computations).

Advanced in this regard was the work by 14), which fostered an evaluation approach using a traditional
LP system. Roughly, the values of ground external atoms are guessed, model candidates are computed as
answer sets of a rewritten program, and then those discarded which violate the guess. Compared to previous
approaches such as the one by 20), it further exploits conflict-driven techniques which were extended to
external sources. A generalized notion of Splitting Set (34) was introduced by 20) for non-ground HEX-
programs, which were then split into subprograms with and without external access, where the former are
as large and the latter as small as possible. The subprograms are evaluated with various specific techniques,
depending on their structure (20; 48). However, for real-world applications this approach has severe scal-
ability limitations, as the number of ground external atoms may be large, and their combination causes a
huge number of model candidates and memory outage without any answer set output.

To remedy this problem, we reconsider model computation and make several contributions, which are
summarized as follows.

• We present a modularity property of HEX-programs based on a novel generalization of the Global Splitting
Theorem (20), which lifted the Splitting Set Theorem (34) to HEX-programs. In contrast to previous results,
the new result is formulated on a rule splitting set comprising rules that may be non-ground, moreover it is
based on rule dependencies rather than atom dependencies. This theorem allows for defining answer sets of
the overall program in terms of the answer sets of program components that may be non-ground.

• Moreover, we present a generalized version of the new splitting theorem which allows for sharing con-
straints across the split; this helps to prune irrelevant partial models and candidates earlier than in previous
approaches. As a consequence — and different from other decomposition approaches— subprograms for
evaluation may overlap and also be non-maximal resp. non-minimal.

• Based on this theorem, we present an evaluation framework that allows for flexible evaluation of HEX-
programs. It consists of an evaluation graph and a model graph; the former captures a modular decompo-

INFSYS RR 15-01 5

sition and partial evaluation order of the program resp. its rules, while the latter comprises for each node
collections of sets of input models (which need to be combined) and output models to be passed on between
components. This structure allows us to realize customized divide-and-conquer evaluation strategies. As the
method works on non-ground programs, introducing new values by external calculations is feasible, as well
as applying optimization based on domain splitting (13).

• A generic prototype of the evaluation framework has been implemented which can be instantiated with
different solvers for Answer Set Programming (ASP) (in our suite, with dlv and clasp). It also features model
streaming, i.e., enumeration of the models one by one. In combination with early model pruning, this can
considerably reduce memory consumption and avoid termination without solution output in a larger number
of settings.

Applying it to ordinary programs (without external functions) allows us to do parallel solving with a solver
software that does not have parallel computing capabilities itself (‘parallelize from outside’).

The paper is organized as follows. In Section 2 we present the HEX-language and consider an example to
demonstrate it in an intuitive way; we will use it as a running example throughout the paper. In Section 3 we
then introduce necessary restrictions and preliminary concepts that from dependency-based program evalu-
ation. After that, we develop in Section 4 our generalized splitting theorem, which is applied in Section 5 to
build a new decomposition framework. Some details about the implementation and experimental results are
given in Section 6. After a discussion including related work in Section 7, the paper concludes in Section 8.
The proofs of all technical results have been moved to A.

2 Language Overview

In this section, we introduce the syntax and semantics of HEX-programs as far as this is necessary to explain
use cases and basic modeling in the language.

2.1 HEX Syntax

Let C, X , and G be mutually disjoint sets whose elements are called constant names, variable names, and
external predicate names, respectively. Unless explicitly specified, elements from X (resp., C) are denoted
with first letter in upper case (resp., lower case), while elements from G are prefixed with ‘ & ’. Note that
constant names serve both as individual and predicate names.

Elements from C ∪X are called terms. An atom is a tuple (Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms;
n ≥ 0 is the arity of the atom. Intuitively, Y0 is the predicate name, and we thus also use the more familiar
notation Y0(Y1, . . . , Yn). The atom is ordinary (resp. higher-order), if Y0 is a constant (resp. a variable).
An atom is ground, if all its terms are constants. Using an auxiliary predicate auxn for each arity n, we can
easily eliminate higher-order atoms by rewriting them to ordinary atoms auxn(Y0, . . . , Yn). We therefore
assume in the rest of this article that programs have no higher-order atoms.

An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (1)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output lists, respectively), and
&g ∈ G is an external predicate name. We assume that &g has fixed lengths in(&g) = n and out(&g) = m
for input and output lists, respectively.

6 INFSYS RR 15-01

PEDB
swim =

{
location(in,margB), location(in, amalB),
location(out , gansD), location(out , altD)

}

P IDB
swim =

r1: swim(in) ∨ swim(out)← .
r2: need(inout , C)← &rq [swim](C).
r3: goto(X) ∨ ngoto(X)← swim(P), location(P,X).
r4: go ← goto(X).
r5: need(loc, C)← &rq [goto](C).
c6: ← goto(X), goto(Y), X 6= Y.
c7: ← not go.
c8: ← need(X,money).

Figure 1: Program Pswim = PEDB

swim ∪ P IDB
swim to decide swimming location

Intuitively, an external atom provides a way for deciding the truth value of an output tuple depending on
the input tuple and a given interpretation.

Example 1 (a, b, c), a(b, c), node(X), andD(a, b) are atoms; the first three are ordinary, where the second
atom is a syntactic variant of the first, while the last atom is higher-order.

The external atom &reach[edge, a](X) may be devised for computing the nodes which are reachable
in the graph edge from the node a. We have for the input arity in(&reach) = 2 and for the output arity
out(&reach) = 1. Intuitively, &reach[edge, a](X) will be true for all ground substitutions X 7→ b such that
b is a node in the graph given by edge, and there is a path from a to b in that graph. 2

Definition 1 (rules and HEX programs) A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, not βn+1, . . . , not βm, m, k ≥ 0, (2)

where all αi are atoms and all βj are either atoms or external atoms. We let H(r) = {α1, . . . , αk} and
B(r) = B+(r) ∪ B−(r), where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. Furthermore, a
(HEX) program is a finite set P of rules.

We denote by const(P) the set of constant symbols occurring in a program P .
A rule r is a constraint, if H(r) = ∅ and B(r) 6= ∅; a fact, if B(r) = ∅ and H(r) 6= ∅; and nondisjunc-

tive, if |H(r)| ≤ 1. We call r ordinary, if it contains only ordinary atoms. We call a program P ordinary
(resp., nondisjunctive), if all its rules are ordinary (resp., nondisjunctive).

Example 2 (Swimming Example) Imagine Alice wants to go for a swim in Vienna. She knows two indoor
pools called Margarethenbad and Amalienbad (represented by margB and amalB , respectively), and she
knows that outdoor swimming is possible in the river Danube at two locations called Gänsehäufel and Alte
Donau (denoted gansD and altD , respectively).1 She looks up on the Web whether she needs to pay an
entrance fee, and what additional equipment she will need. Finally she has the constraint that she does not
want to pay for swimming.

The HEX program Pswim = PEDB
swim ∪ P IDB

swim shown in Figure 1 represents Alice’s reasoning problem.
The extensional part PEDB

swim contains a set of facts about possible swimming locations (where in and out
are short for indoor and outdoor , respectively). The intensional part P IDB

swim incorporates the web research
of Alice in an external computation, i.e., using an external atom of the form &rq〈choice〉〈resource〉.

1To keep the example simple, we assume Alice knows no other possibilities to go swimming in Vienna.

INFSYS RR 15-01 7

Assume Alice finds out that indoor pools in general have an admission fee, and that one also has to pay
at Gänsehäufel, but not at Alte Donau. Furthermore Alice reads some reviews about swimming locations
and finds out that she will need her Yoga mat for Alte Donau because the ground is so hard, and she will
need goggles for Amalienbad because there is so much chlorine in the water.

We next explain the intuition behind the rules in Pswim : r1 chooses indoor vs. outdoor swimming lo-
cations, and r2 collects requirements that are caused by this choice. Rule r3 chooses one of the indoor vs.
outdoor locations, depending on the choice in r1, and r5 collects requirements caused by this choice. By r4
and c7 we ensure that some location is chosen, and by c6 that only a single location is chosen. Finally c8
rules out all choices that require money.

The external predicate &rq has in(&rq) = out(&rq) = 1; intuitively &rq [α](β) is true if a resource β
is required when swimming in a place in the extension of predicate α. For example, &rq [swim](money) is
true if swim(in) is true, because indoor swimming pool charge money for swimming. Note that this only
gives an intuitive account of the semantics of &rq which will formally be defined in the following examples.
2

2.2 HEX Semantics

The semantics of HEX-programs (20; 48) generalizes the answer-set semantics (27). Let P be a HEX-
program. Then the Herbrand base of P , denoted HBP , is the set of all possible ground versions of atoms
and external atoms occurring in P obtained by replacing variables with constants from C. The grounding of
a rule r, grnd(r), is defined accordingly, and the grounding of P is given by grnd(P) =

⋃
r∈P grnd(r).

Unless specified otherwise, X and G are implicitly given by P . Different from the ‘usual’ ASP setting,
the set of constants C used for grounding a program is only partially given by the program itself; in HEX,
external computations may introduce new constants that are relevant for semantics of the program.

Example 3 (ctd) In Pswim the external atom &rq can introduce constants yogamat and goggles which are
not contained in Pswim , but they are relevant for computing answer sets of Pswim . 2

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We say that I is a model
of atom a ∈ HBP , denoted I |= a, if a ∈ I .

With every external predicate name &g ∈ G, we associate an (n+m+1)-ary Boolean function f&g

assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where n = in(&g), m = out(&g), I ⊆ HBP ,
and xi, yj ∈ C. We say that I ⊆ HBP is a model of a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm),
denoted I |= a, if f&g(I, y1 . . ., yn, x1, . . . , xm) = 1.

Note that this definition of external atom semantics is very general; indeed an external atom may depend
on every part of the interpretation. Therefore we will later (Section 3.1) formally restrict external computa-
tions such that they depend only on the extension of those predicates in I which are given in the input list.
All examples and encodings in this work obey this restriction.

Example 4 (ctd.) The external predicate &rq in Pswim represents Alice’s knowledge about swimming loca-
tions as follows: for any interpretation I and some predicate (i.e., constant) α,

&rq [α](money) iff f&rq(I, α,money) = 1 iff α(in) ∈ I or α(gansD) ∈ I,
&rq [α](yogamat) iff f&rq(I, α, yogamat) = 1 iff α(altD) ∈ I , and
&rq [α](goggles) iff f&rq(I, α, goggles) = 1 iff α(amalB) ∈ I.

Due to this definition of f&rq , it holds, e.g., that {swim(in)} |= &rq [swim](money). This matches the
intuition about &rq indicated in the previous example. 2

8 INFSYS RR 15-01

Let r be a ground rule. Then we say that

(i) I satisfies the head of r, denoted I |= H(r), if I |= a for some a ∈ H(r);

(ii) I satisfies the body of r (I |=B(r)), if I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r); and

(iii) I satisfies r (I |= r), if I |=H(r) whenever I |=B(r).

We say that I is a model of a HEX-program P , denoted I |= P , if I |= r for all r ∈ grnd(P). We call P
satisfiable, if it has some model.

Definition 2 (answer set) Given a HEX-program P , the FLP-reduct of P with respect to I ⊆ HBP , de-
noted fP I , is the set of all r ∈ grnd(P) such that I |= B(r). Then I ⊆ HBP is an answer set of P if, I is
a minimal model of fP I .

Example 5 (ctd.) The HEX program Pswim with external semantics as given in the previous example has a
single answer set

I = {swim(out), goto(altD),ngoto(gansD), go,need(loc, yogamat)}.

(Here, and in following examples, we omit PEDB
swim from all interpretations and answer sets.) Under I , the

external atom &rq [goto](yogamat) is true all others (&rq [swim](money), &rq [goto](money),
&rq [swim](yogamat), . . .) are false. Intuitively, answer set I tells Alice to take her Yoga mat and go for a
swim to Alte Donau. 2

HEX programs (19) are a conservative extension of disjunctive (resp., normal) logic programs under the
answer set semantics: answer sets of ordinary nondisjunctive HEX programs coincide with stable models of
logic programs as proposed by 26), and answer sets of ordinary HEX programs coincide with stable models
of disjunctive logic programs (44; 27).

The FLP-reduct as used in the HEX-semantics is equivalent to the GL-reduct, which removes the default-
negated part from the remaining rules and is used for ordinary ASP programs, but the former is superior
for programs with aggregates as it eliminates unintuitive answer sets. To this end, consider the following
example.

Example 6 Let P be the HEX-program

p(a)← not¬ [p](a)

f ← not p(a), not f

where f¬(I, p, a) = 1 if p(a) 6∈ I and f¬(I, p, a) = 0 otherwise.
The program has the answer set candidates I1 = {p(a)}, I2 = {p(a), f}, I3 = ∅ and I4 = {f}. Under

the GL-reduct, we have P I1 = P I2 = {p(a)←}, P I3 = {f ←} and P I4 = ∅. As I1 is a minimal model of
P I1 , it is a GL-answer set of P ; no other candidate is a GL-answer set. However, it is not intuitive that I1
is an answer set as p(a) supports itself. Using the FLP-reduct, we get fP I1 = { p(a) ← not¬ [p](a) }.
But now I1 is not a minimal model of fP I1 , as I3 is also a model of fP I1 and I3 (I1. Similarly, one can
check that I is not a minimal model of fP I for each other candidate I; thus under the FLP-reduct, every
interpretation fails to be an answer set.

In the previous example, all answer sets of a HEX program P under the FLP-reduct are in fact minimal
models of P ; this is not a coincidence but holds in general. For a study of properties of hex-programs, we
refer to (19; 48; 53) and (51), where also variants and refinements of the FLP-semantics are considered, as
well as the particular instance called description logic programs (see Section 2.3).

INFSYS RR 15-01 9

2.3 Using HEX-Programs for Knowledge Representation and Reasoning

While ASP is well-suited for many problems in artificial intelligence and was successfully applied to a range
of applications (cf. e.g. 38)), modern trends computing, for instance in distributed systems and the World
Wide Web, require accessing other sources of computation as well. HEX-programs cater for this need by its
external atoms which provide a bidirectional interface between the logic program and other sources.

One can roughly distinguish between two main usages of external sources, which we will call compu-
tation outsourcing, knowledge outsourcing, and combinations thereof. However, we emphasize that this
distinction concerns the usage in an application but both are based on the same syntactic and semantic lan-
guage constructs. For each of these groups we will describe some typical use cases which serve as usage
patterns for external atoms when writing HEX-programs.

2.3.1 Computation Outsourcing

Computation outsourcing means to send the definition of a subproblem to an external source and retrieve its
result. The input to the external source uses predicate extensions and constants to define the problem at hand
and the output terms are used to retrieve the result, which can in simple cases also be a boolean decision.

On-demand Constraints A special case of the latter case are on-demand constraints of type

← &forbidden[p1, . . . , pn]()

which eliminate certain extensions of predicates p1, . . . , pn. Note that the external evaluation of such a
constraint can also return reasons for conflicts to the reasoner in order to restrict the search space and avoid
reconstruction of the same conflict (14). This is similar to the CEGAR approach in model checking (9).

Computations which cannot (easily) be Expressed by Rules Outsourcing computations also allows for
including algorithms which cannot easily or efficiently be expressed in the logic program, e.g., because they
involve floating-point numbers. As a concrete example, an artificial intelligence agent for the skills and tac-
tics game AngryBirds needs to perform physics simulations (8). As this requires floating point computations
which can practically not be done by rules as this would either come at the costs of very limited precision
or a blow-up of the grounding, HEX-programs with access to an external source for physics simulations are
used.

Complexity Lifting External atoms can realize computations with a complexity higher than the complex-
ity of ordinary ASP programs. The external atom serves than as an ‘oracle’ for deciding subprograms.
While for the purpose of complexity analysis of the formalism it is often assumed that external atoms can be
evaluated in polynomial time (21)2, as long as external sources are decidable there is no practical reason for
limiting their complexity (but of course a computation with greater complexity than polynomial time lifts
the complexity results of the overall formalism as well). In fact, external sources can be other ASP- or HEX-
programs. This allows for encoding other formalisms of higher complexity in HEX-programs, e.g. abstract
argumentation frameworks (11).

2Under this assumption, deciding the existence of an answer set of a propositional HEX-program is ΣP
2 -complete.

10 INFSYS RR 15-01

2.3.2 Knowledge Outsourcing

In contrast, knowledge outsourcing refers to external sources which store information which needs to be
imported, while reasoning itself is done in the logic program.

A typical example can be found in Web resources which provide information for import, e.g. RDF triple
stores (32) or geographic data (37). More advanced use cases are multi-context systems, which are systems
of knowledge-bases (contexts) that are abstracted to acceptable belief sets (roughly speaking, sets of atoms)
and interlinked by bridge rules that range across knowledge bases (5); access to individual contexts has been
provided through external atoms (4). Also sensor data, as often used when planning and executing actions
in an environment, is a form of knowledge outsourcing (cf. ACTHEX (3)).

2.3.3 Combinations

It is also possible to combine the outsourcing of computations and of knowledge. A typical example are logic
programs with access to description logic knowledge bases (DL KBs), called DL-programs (18). A DL KB
does not only store information, but also provides a reasoning mechanism. This allows the logic program
for formalizing queries which initiate external computations based on external knowledge and importing the
results.

3 Extensional Semantics and Atom Dependencies

We now introduce additional important notions related to HEX-programs. Some of the following concepts
are needed to make the formalism decidable, others prepare the basic evaluation techniques presented in
later sections.

3.1 Restriction to Extensional Semantics for HEX External Atoms

To make HEX programs computable in practice, it is useful to restrict external atoms, such that their seman-
tics depends only on extensions of predicates given in the input tuple (20). This restriction is relevant for all
subsequent considerations.

Syntax Each &g is associated with an input type signature t1, . . . , tn such that every ti is the type of input
Yi at position i in the input list of &g . A type is either const or a non-negative integer.

Consider &g , its type signature t1, . . . , tn, and a ground external atom &g [y1, . . . , yn](x1, . . . , xm).
Then, in this setting, the signature of &g enforces certain constraints on f&g(I, y1, . . . , yn, x1, . . . , xm)
such that its truth value depends only on

(a) the constant value of yi whenever ti = const, and

(b) the extension of predicate yi, of arity ti, in I whenever ti ∈ N.

Example 7 (ctd) Continuing Example 1, for &reach[edge, a](x), we have t1 = 2 and t2 = const. There-
fore the truth value of &reach[edge, a](x) depends on the extension of binary predicate edge , on the constant
a, and on x.

Continuing Example 4, the external predicate &rq has t1 = 1, therefore the truth value of &rq [swim](x)
for various x wrt. an interpretation I depends on the extension of the unary predicate swim in the input list.
2

INFSYS RR 15-01 11

Note that the truth value of an external atom with only constant input terms, i.e., ti = const, 1 ≤ i ≤ n,
is independent of I .

Semantic constraints enforced by signatures are formalized next.

Semantics Let a be a type, I be an interpretation and p ∈ C. The projection function Πa(I, p) is the binary
function such that Πconst(I, p) = p for a = const, and Πa(I, p) = {(x1, . . . , xa) | p(x1, . . . , xa) ∈ I}
for a ∈ N. Recall that atoms p(x1, . . . , xa) are tuples (p, x1, . . . , xa); thus Da := Ca+1, i.e., the a+1-fold
cartesian product of C, contains all syntactically possible atoms with a arguments. Furthermore, we let
Dconst := C.

Definition 3 (extensional evaluation function) Let &g be an external predicate with oracle function f&g ,
in(&g) = n, out(&g) = m, and type signature t1, . . . , tn. Then the extensional evaluation function F&g :
Dt1 × · · · ×Dtn → 2C

m
of &g is defined such that for every a = (a1, . . . , am)

a ∈ F&g(Πt1(I, p1), . . . ,Πtn(I, pn)) iff f&g(I, p1, . . . , pn, a1, . . . , am) = 1.

Note that F&g makes the possibility of new constants in external atoms more explicit: tuples returned by
F&g may contain constants that are not contained in P . Furthermore, F&g is well-defined only under the
assertion at the beginning of this section.

Example 8 (ctd) For I from Example 5, we have Π1(I, swim) = {(swim, out)} and
Π1(I, goto) = {(goto, altD)}. The extensional evaluation function of &rq is

F&rq(U) ={(money) | (X, in) ∈ U or (X, gansD) ∈ U}∪
{(yogamat) | (X, altD) ∈ U}∪ {(goggles) | (X, amalB) ∈ U}

Observe that none of the constants yogamat and goggles occurs in P (we have that const(P) = {swim,
goto, ngoto, need , go, inout , loc, in, out , amalB , gansD , altD , margB ,money , location}). they are
introduced by the external atom semantics. Note that (money) is a unary tuple, as &rq has a unary output
list. 2

3.2 Atom Dependencies

To account for dependencies between heads and bodies of rules is a common approach for realizing seman-
tics of ordinary logic programs, as done, e.g., by means of the notions of stratification and its refinements
like local stratification (45) or modular stratification (47), or by splitting sets (34). In HEX programs,
head-body dependencies are not the only possible source of predicate interaction. Therefore new types of
(non-ground) dependencies were considered by 20) and 48). In the following we recall these definitions but
slightly reformulate and extend them, to prepare for the following sections where we lift atom dependencies
to rule dependencies.

In contrast to the traditional notion of dependency, which in essence hinges on propositional programs,
we must consider non-ground atoms; such atoms a and b clearly depend on each other if they unify, which
we denote by a ∼ b.

For analyzing program properties it is relevant whether a dependency is positive or negative. Whether
the value of an external atom a depends on the presence of an atom b in an interpretation I depends in
turn on the oracle function f&g that is associated with the external predicate &g of a. Depending on other
atoms in I , in some cases the presence of b might make a true, in some cases its absence. Therefore we

12 INFSYS RR 15-01

will not speak of positive and negative dependencies, as by 12), but more adequately of monotonic and
nonmonotonic dependencies, respectively.3

Definition 4 An external predicate &g is monotonic, if for all interpretations I, I ′ such that I ⊆ I ′ and all
tuples of constants X, f&g(I,X) = 1 implies f&g(I ′,X) = 1; otherwise &g is nonmonotonic. Furthermore,
a ground external atom a is monotonic, if for all interpretations I, I ′ such that I ⊆ I ′ we have I |= a implies
I ′ |= a; a non-ground external atom is monotonic, if each of its ground instances is monotonic.

Clearly, each external atom that involves a monotonic external predicates is monotonic, but not vice
versa; thus monotonicity of external atoms is more fine-grained. In the sequel, we confine for simplicity to
monotonic external predicates, which were underlying the original dependency definitions; the extension to
arbitrary monotonic external atoms is straightforward.

Example 9 (ctd) Consider F&rq(U) in Example 8: adding tuples to U cannot remove tuples from F&rq(U),
therefore &rq is a monotonic external predicate. 2

Next we define relations for dependencies from external atoms to other atoms.

Definition 5 (External Atom Dependencies) Let P be a HEX program, let a = &g [X1, . . . , Xn](Y) in P
be an external atom with the type signature t1, . . . , tn and let b = p(Z) be an atom in the head of a rule in P .
Then a depends external monotonically (resp., nonmonotonically) on b, denoted a→e

m b (resp., a→e
nm b),

if &g is monotonic (resp., nonmonotonic), ti ∈ N, Z has arity ti, and b is of form p(Z) and Xi = p. We
define that a→e b if a→e

m b or a→e
nm b.

Example 10 (ctd) In our example we have the three external dependencies &rq [swim](C)→e
m swim(in),

&rq [swim](C)→e
m swim(out), and &rq [goto](C)→e

m goto(X). 2

As in ordinary ASP, atoms in HEX programs may depend on each other because of rules in the program.

Definition 6 For a HEX-program P and atoms α, β occurring in P , we say that

(a) α depends monotonically on β (α→m β), if one of the following holds:

(i) some rule r ∈ P has α ∈ H(r) and β ∈ B+(r);
(ii) there are rules r1, r2 ∈ P such that α ∈ B(r1), β ∈ H(r2), and α ∼ β; or

(iii) some rule r ∈ P has α ∈ H(r) and β ∈ H(r).

(b) α depends nonmonotonically on β (α →n β), if there is some rule r ∈ P such that α ∈ H(r) and
β ∈ B−(r).

Note that combinations of Definitions 5 and 6 were already introduced by 48) and 13); however these
works represent nonmonotonicity of external atoms in rule body dependencies and use a single ‘external
dependency’ relation. In contrast, we represent nonmonotonicity of external atoms where it really happens,
namely in dependencies from external atoms to ordinary atoms. We therefore obtain a simpler dependency
relation between rule bodies and heads.

We say that atom α depends on atom β, denoted α → β, if either α →m β, α →n β, or α →e β; that
is,→ is the union of the relations→m,→n, and→e.

We next define the atom dependency graph.
3Note that anti-monotonicity (i.e., a larger input of an external atom can only make the external atom false, but never true) could

be a third useful distinction that was exploited in (14). We here only distinguish monotonic from nonmonotonic external atoms and
classify antimonotonic external atoms as nonmonotonic.

INFSYS RR 15-01 13

swim(in) swim(out)

&rq [swim](C) swim(P)

need(inout , C) goto(X) ngoto(X)

goto(Y)go

&rq [goto](C)

need(goto, C)

need(X,money)

m

m

e
m

e
m mm

m m m

m

m

m

e
m

m

mm

m

m

Figure 2: Atom dependency graph of running example Pswim .

Definition 7 For a HEX-program P , the atom dependency graph ADG(P) = (VA, EA) of P has as vertices
VA the (non-ground) atoms occurring in non-facts of P and as edgesEA the dependency relations→m,→n,
→e

m, and→e
nm between them in P .

Example 11 (ctd) Figure 2 shows ADG(Pswim). Note that the nonmonotonic body literal in c7 does not
show up as a nonmonotonic dependency, as c7 has no head atoms. (The rule dependency graph in Section 4
will make this negation apparent.) 2

Next we use the dependency notions to define safety conditions on HEX programs.

3.3 Safety Restrictions

To make reasoning tasks on HEX programs decidable (or more efficiently computable), the following poten-
tial restrictions were formulated.

Rule safety This is a restriction well-known in logic programming, and it is required to ensure finite
grounding of a non-ground program. A rule is safe, if all its variables are safe, and a variable is safe if it is
contained in a positive body literal. Formally a rule r is safe iff variables in H(r) ∪ B−(r) are a subset of
variables in B+(r).

Domain-expansion safety In an ordinary logic program P , we usually assume that the set of constants C
is implicitly given by P . In a HEX program, external atoms may invent new constant values in their output
tuples. We therefore must relax this to ‘C is countable and partially given by P ’, as shown by the following
example.

14 INFSYS RR 15-01

Example 12 In the Swimming Example, grounding Pswim with const(Pswim) is not sufficient. Further
constants ‘generated’ by external atoms must be considered. For example yogamat /∈ const(Pswim) and
I |= &rq [goto](yogamat), hence we must ground

need(loc, C)← &rq [goto](C)

with C = yogamat to obtain the correct answer set. 2

Therefore grounding P with const(P) can lead to incorrect results. Hence we want to obtain new
constants during evaluation of external atoms, and we must use these constants to evaluate the remainder of
a given HEX program. However, to ensure decidability, this process of obtaining new constants must always
terminate.

Hence, we require programs to be domain-expansion safe (20): there must not be a cyclic dependency
between rules and external atoms such that an input predicate of an external atom depends on a variable
output of that same external atom, if the variable is not guarded by a domain predicate.

With HEX we need the usual notion of rule safety, i.e., a syntactic restriction which ensures that each
variable in a rule only has a finite set of relevant constants for grounding. As external computations can
introduce new constants in their output lists, ensuring safety in HEX is not as straightforward as in ordinary
ASP.

We first recall the definition of safe variables and safe rules for HEX.

Definition 8 (Def. 5 by 20)) The safe variables of a rule r is the smallest set of variablesX that occur either
(i) in some ordinary atom β ∈ B+(r), or (ii) in the output list X of an external atom &g [Y1, . . . , Yn](X) in
B+(r) where all Y1, . . . , Yn are safe. A rule r is safe, if each variable in r is safe.4

However, safety alone does not guarantee finite grounding of HEX programs, because an external atom
might create new constants, i.e., constants not part of the program itself, in its output list (see Example 8).
These constants can become part of the extension of an atom in the rule head, and by grounding and evalu-
ation of other rules become part of the extension of a predicate which is an input to the very same external
atom.

Example 13 (adapted from 48)) The following HEX program is safe according to Definition 8 and never-
theless cannot be finitely grounded:

source(“http : //some_url”)← .
url(X)←&rdf [source](X, “rdf :subClassOf ”, C).

source(X)← url(X).

Suppose the &rdf [source](S, P,O) atom retrieves all triples (S, P,O) from all RDF triplestores specified
in the extension of source, and suppose that each triplestore contains a triple with a URL S that does not
show up in another triplestore. As a result, all these URLs are collected in the extension of source which
leads to even more URLs being retrieved and a potentially infinite grounding.

However, we could change the rule with the external atom to

url(X)← &rdf [source](X, “rdf :subClassOf ”, C), limit(X) (3)

and add an appropriate set of limit facts. This addition of a range predicate limit(X) which does not
depend on the external atom output ensures a finite grounding. 2

4This is stated by 20) as ‘if each variable appearing in a negated atom and in any input list is safe, and variables appearing in
H(r) are safe’, which is equivalent.

INFSYS RR 15-01 15

To obtain a syntactic restriction that ensures finite grounding for HEX, so called strong safety has been
introduced for the HEX programs (20). Intuitively, this concept requires all output variables of cyclic external
atoms (using the dependency notion from Definition 7) to be bounded by ordinary body atoms of the same
rule which are not part of the cycle. However, this condition is unnecessarily restrictive, and Therefore, the
extensible notion of liberal domain-expansion safety (lde-safety) was introduced by 15), which we will use
in the following. For the purpose of this article, we may omit the formal details of lde-safety (see 15) and D
for an outline); it is sufficient to know that every lde-safe program has a finite grounding that has the same
answer sets as the original program.

4 Rule Dependencies and Generalized Rule Splitting Theorem

In this section, we introduce a new notion of dependencies in HEX-programs, namely between non-ground
rules in a program. Based on this notion, we then present a modularity property of HEX-programs that allows
us to obtain answer sets of a program from the answer sets of its components. The property is formulated
as a splitting theorem based on dependencies among rules and lifts a similar result for dependencies among
atoms, viz. the Global Splitting Theorem (20), to this setting, and it generalizes and improves it. This result
is exploited in a more efficient HEX-program evaluation algorithm, which we show in Section 5.

4.1 Rule Dependencies

We define rule dependencies as follows.

Definition 9 (Rule dependencies) Let P be a program and a, b atoms occurring in distinct rules r, s ∈ P .
Then r depends on s according to the following cases:

(i) if a ∼ b, a ∈ B+(r), and b ∈ H(s), then r →m s;
(ii) if a ∼ b, a ∈ B−(r), and b ∈ H(s), then r →n s;

(iii) if a ∼ b, a ∈ H(r), and b ∈ H(s), then both r →m s and s→m r;
(iv) if a→e b, a ∈ B(r) is an external atom, and b ∈ H(s), then

• r →m s if a ∈ B+(r) and a→e
m b, and

• r →n s otherwise.

Intuitively, conditions (i) and (ii) reflect the fact that the applicability of a rule r depends on the applicability
of a rule s with a head that unifies with a literal in the body of rule r; condition (iii) exists because r and s
cannot be evaluated independently if they share a common head atom (e.g., u ∨ v ← cannot be evaluated
independently from v ∨ w ←); and (iv) defines dependencies due to predicate inputs of external atoms.

In the sequel, we let→m,n = →m ∪ →n be the union of monotonic and nonmonotonic rule depen-
dencies. We next define graphs of rule dependencies.

Definition 10 Given a HEX-program P , the rule dependency graphDG(P) = (VD, ED) of P is the labeled
graph with vertex set VD = P and edge set ED = →m,n.

Example 14 (ctd.) Figure 3 depicts the rule dependency graph of our running example. According to Defi-
nition 9, we have the following rule dependencies in P IDB

swim :
• due to (i) we have r3 →m r1, r4 →m r3, c6 →m r3, c8 →m r2, and c8 →m r5;
• due to (ii) we have c7 →n r4;

16 INFSYS RR 15-01

r1: swim(in)∨ swim(out)←

r2: need(inout , C)←
&rq [swim](C)

r3: goto(X)∨ngoto(X)←
swim(P), location(P,X)

r4: go← goto(X)
r5: need(loc, C)←

&rq [goto](C)

c6: ← goto(X), goto(Y), X 6=Y c7: ← not goc8: ←need(X,money)

m m

m
m

m

nm

m

m

Figure 3: Rule dependency graph of running example Pswim .

• due to (iii) we have no dependencies; and
• due to (iv) we have r2 →m r1 and r5 →m r3.

Note that &rq is monotonic (see Example 9). 2

4.2 Splitting Sets and Theorems

Splitting sets are a notion that allows for describing how a program can be decomposed into parts and how
semantics of the overall program can be obtained from semantics of these parts in a divide-and-conquer
manner.

We lift the original HEX splitting theorem (20, Theorem 2) and the according definitions of global split-
ting set, global bottom, and global residual (20, Definitions 8 and 9) to our new definition of dependencies
among rules.

A rule splitting set is a part of a (non-ground) program that does not depend on the rest of the program.
This corresponds in a sense with global splitting sets by 20).

Definition 11 (Rule Splitting Set) A rule splitting set R for a HEX-program P is a set R ⊆ P of rules such
that whenever r ∈ R, s ∈ P , and r →m,n s, then s ∈ R holds.

Example 15 (ctd) The following are some rule splitting sets of Pswim : {r1}, {r1, r2}, {r1, r3}, {r1, r2, r3},
{r1, r2, r3, r5, c8}. The set R = {r1, r2, c8} is not a rule splitting set, because c8 →m r5 but r5 /∈ R. 2

Because of possible constraint duplication, we no longer partition the input program, and the customary
notion of splitting set, bottom, and residual, is not appropriate for sharing constraints between bottom and
residual. Instead, we next define a generalized bottom of a program, which splits a non-ground program into
two parts which may share certain constraints.

Definition 12 (Generalized Bottom) Given a rule splitting set R of a HEX-program P , a generalized bot-
tom B of P wrt. R is a set B with R ⊆ B ⊆ P such that all rules in B \ R are constraints that do not
depend nonmonotonically on any rule in P \B.

Example 16 (ctd) A rule splitting set R of Pswim (e.g., those given in Example 15) is also a generalized
bottom of Pswim wrt. R. The set {r1, r2, c8} is not a rule splitting set, but it is a generalized bottom of
Pswim wrt. the rule splitting set {r1, r2}, as c8 is a constraint that depends only monotonically on rules in
Pswim \ {r1, r2, c8}. 2

INFSYS RR 15-01 17

Next, we describe how interpretations of a generalized bottom B of a program P lead to interpretations
of P without re-evaluating rules in B. This is a generalization of the Splitting Set Theorem (34), of a
modularity result for disjunctive logic programs (17, Lemma 5.1) and of the splitting theorem for (non-
ground) HEX-programs by 20) (Global Splitting Theorem) and by 48) (Theorem 4.6.2).

Intuitively, this is a relaxation of the previous non-ground HEX splitting theorem: a constraint may be
put both in the bottom and in the residual if it has no nonmonotonic dependencies to the residual. The benefit
of such constraint sharing is a smaller number of answer sets of the bottom, and hence of fewer evaluations
of the residual program.
Notation. For any set I of ground ordinary atoms, we denote by facts(I) the corresponding set of ground
facts; furthermore, for any set P of rules, we denote by gh(P) the set of ground head atoms occurring in
grnd(P).

Theorem 1 (Splitting Theorem) Given a HEX-program P and a rule splitting set R of P , M ∈ AS(P) iff
M ∈ AS(P \R ∪ facts(X)) with X ∈ AS(R).

Using the definition of generalized bottom, we generalize the above theorem.

Theorem 2 (Generalized Splitting Theorem) Let P be a HEX-program, let R be a rule splitting set of P ,
and let B be a generalized bottom of P wrt. R. Then

M ∈AS(P) iff M ∈AS(P \R∪ facts(X)) where X ∈AS(B).

Note thatB \R contains shareable constraints that are used twice in the Generalized Splitting Theorem, viz.
in computing X and in computing M .

The Generalized Splitting Theorem is useful for early elimination of answer sets of the bottom thanks
to constraints which depend on it but also on rule heads outside the bottom. Such constraints can be shared
between the bottom and the remaining program.

Example 17 (ctd) We apply Theorems 1 and 2 to Pswim and compare them. Using the rule splitting set
{r1, r2}, we can obtain AS(Pswim) by first computing AS({r1, r2}) = {I1, I2} where
I1 = {swim(in),need(inout ,money)}, I2 = {swim(out)}, and by then using Theorem 1:
X ∈ AS(Pswim) iff it holds that X ∈ AS({r3, r4, r5, c6, c7, c8} ∪ facts(I1)) or
X ∈ AS({r3, r4, r5, c6, c7, c8} ∪ facts(I2)). Note that the computation with I1 yields no answer set, as
need(inout ,money) ∈ I1 satisfies the body of c8 and “kills” any model candidate. In contrast, if we use the
generalized bottom {r1, r2, c8}, we haveAS({r1, r2, c8}) =

{
{swim(out)}

}
and can use Theorem 2 to ob-

tain AS(Pswim) with only one further answer set computation: X ∈ AS(Pswim) iff X ∈ AS({r3, r4, r5, c6,
c7, c8} ∪ {swim(out)←}). Note that we use c8 in both computations, i.e., c8 is shared between the gener-
alized bottom and the remaining computation. 2

Armed with the results of this section, we proceed to program evaluation in the next section. A dis-
cussion of the new splitting theorems that compares them to previous related theorems and argues for their
advantage is given in Section 7.1. However, we can summarize some points as follows.

• By moving from atom to rule splitting sets, no separate definition of the bottom is needed, which just
becomes the (rule) splitting set.

• As regards HEX-programs, splitting is simple (and not troubled) if all atoms that are true in an answer
set of the bottom also appear in the residual program. Typically, this is not the case in results from the
literature.

18 INFSYS RR 15-01

• Finally, also the residual program itself is simpler (and easier to construct), by just dropping rules
and adding facts. No rule rewriting needs to be done, and no extra facts need to be introduced in the
residual program nor in the bottom.

The only (negligible) disadvantage of the new theorems is that the answer sets of the bottom and the
residual program may no longer be disjoint; however, each residual answer set includes some (unique)
bottom answer set.

5 Decomposition and Evaluation Techniques

We now introduce our new HEX evaluation framework, which is based on selections of sets of rules of a
program that we call evaluation units (or briefly units).

The traditional HEX evaluation algorithm (20) uses a dependency graph over (non-ground) atoms, and
gradually evaluates sets of rules (the ‘bottoms’ of a program) that are chosen based on this graph. In contrast
our new evaluation algorithm exploits the rule-based modularity results for HEX-programs in Section 4.

While previously a constraint can only kill models once all its dependencies on rules are fulfilled, the
new algorithm increases evaluation efficiency by sharing non-ground constraints, such that they may kill
models earlier; this is safe if all their nonmonotonic dependencies are fulfilled. Moreover, units no longer
must be maximal. Instead, we require that partial models of units, i.e., atoms in heads of their rules, do not
interfere with those of other units. This allows for independence, efficient storage, and easy composition of
partial models of distinct units.

5.1 Evaluation Graph

Using rule dependencies, we next define the notion of evaluation graph on evaluation units. We then relate
evaluation graphs to splitting sets (34) and show how to use them to evaluate HEX-programs by evaluating
units and combining the results.

We define evaluation units as follows.

Definition 13 An evaluation unit (in short ‘unit’) is any lde-safe HEX-program.

The formal definition of lde-safety (see D and 15)) is not crucial here, merely the property that a unit has
a finite grounding with the same answer sets as the original program which can be effectively computed;
lde-safe HEX-programs are the most general class of HEX-programs with this property and computational
support.

An important point of the notion of evaluation graph is that rule dependencies r →x s lead to different
edges, i.e., unit dependencies, depending on the dependency type x ∈ {n,m} and whether r resp. s is a
constraint; constraints cannot (directly) make atoms true, hence they can be shared between units in certain
cases, while sharing non-constraints could violate modularity.

Given a rule r ∈ P and a set U of units, we denote by U |r = {u ∈ U | r ∈ u} the set of units that
contain rule r.

Definition 14 (Evaluation graph) An evaluation graph E = (U,E) of a program P is a directed acyclic
graph whose vertices U are evaluation units and which fulfills the following properties:

(a) P =
⋃

u∈U u, i.e., every rule r ∈ P is contained in at least one unit;

INFSYS RR 15-01 19

r1: swim(in)∨ swim(out)← .
r3: goto(X)∨ngoto(X)← swim(P), location(P,X).
r4: go← goto(X).
c6:← goto(X), goto(Y), X 6= Y.
c7:← not go.
derives: swim(X), goto(X), ngoto(X), go

r2: need(inout , C)←&rq [swim](C).
r5: need(loc, C)←&rq [goto](C).
derives: need(A,B)

c8:←need(X,money).
derives nothing

u1

u2

u3

Figure 4: Evaluation graph E1 for running example HEX program Pswim .

(b) every non-constraint r ∈ P is contained in exactly one unit, i.e.,
∣∣U |r∣∣ = 1;

(c) for each nonmonotonic dependency r →n s between rules r, s ∈ P and for all u ∈ U |r, v ∈ U |s,
u 6= v, there exists an edge (u, v) ∈ E (intuitively, nonmonotonic dependencies between rules have
corresponding edges everywhere in E); and

(d) for each monotonic dependency r →m s between rules r, s ∈ P , there exists some u ∈ U |r such that E
contains all edges (u, v) with v ∈ U |s for v 6= u (intuitively, for each rule r there is (at least) one unit
in E where all monotonic dependencies from r to other rules have corresponding outgoing edges in E).

We remark that 12) and 49) defined evaluation units as extended pre-groundable HEX-programs; later,
46) and 15) defined generalized evaluation units as lde-safe HEX-programs, which subsume extended pre-
groundable HEX-programs, and generalized evaluation graphs on top as in Definition 14. As more the
grounding properties of units matter than the precise fragment, we dropped here ‘generalized’ to avoid
complex terminology.

As a non-constraint can occur only in a single unit, the above definition implies that all dependencies of
non-constraints have corresponding edges in E , which is formally expressed in the following proposition.

Proposition 1 Let E = (U,E) be an evaluation graph of a program P , and assume r →m,n s is a de-
pendency between a non-constraint r ∈ P and a rule s ∈ P . Then {(u, v) | u ∈ U |r, v ∈ U |s} ⊆ E
holds.

Example 18 (ctd) Figures 4 and 5 show two possible evaluation graphs for our running example. The
evaluation graph E1 contains every rule of Pswim in exactly one unit. In contrast, E2 contains c8 both in
u2 and in u4. Condition (d) of Definition 14 is particularly interesting for these two graphs; it is fulfilled
as follows. Graph E1 can be obtained by contracting rules in the rule dependency graph DG(Pswim) into
units, i.e., E1 is a (graph) minor of DG(Pswim) and therefore all rule dependencies are realized as unit
dependencies and Conditions (c) and (d) are satisfied. In contrast, E2 is not a minor of DG(Pswim) because
dependency c8 →m r5 is not realized as a dependency from u2 to u4. Nonetheless, all dependencies from
c8 are realized at u4 and thus E2 conforms with condition (d), which merely requires that rule dependencies
have edges corresponding to all monotonic rule dependencies at some unit of the evaluation graph. 2

20 INFSYS RR 15-01

r1: swim(in)∨ swim(out)←.
derives: swim(X)

r2: need(inout , C)←&rq [swim](C).
c8:←need(X,money).
derives: need(inout , C)

r3: goto(X)∨ngoto(X)←
swim(P), location(P,X).

r4: go← goto(X).
c6:← goto(X), goto(Y), X 6=Y.
c7:← not go.
derives: goto(X), ngoto(X), go

r5: need(loc, C)←&rq [goto](C).
c8:←need(X,money).
derives: need(loc, C)

u1

u2 u3

u4

Figure 5: Evaluation graph E2 for running example HEX program Pswim .

Evaluation graphs have the important property that partial models of evaluation units do not intersect,
i.e., evaluation units do not mutually depend on each other. This is achieved by acyclicity and because rule
dependencies are covered in the graph.

In fact, due to acyclicity, mutually dependent rules of a program are contained in the same unit; thus
each strongly connected component of the program’s dependency graph is fully contained in a single unit.
Furthermore, a unit can have in its rule heads only atoms that do not unify with atoms in the rule heads of
other units, as rules which have unifiable heads mutually depend on one another. This ensures that under
any grounding, the following property holds.

Proposition 2 (Disjoint unit outputs) Let E = (U,E) be an evaluation graph of a program P . Then for
each distinct units u1, u2 ∈U , it holds that gh(u1)∩ gh(u2) = ∅.5

We call this the property of disjoint unit outputs.

Example 19 (ctd) Figures 4 and 5 show for each unit which atoms can become true due to rule heads in
them, denoted as ‘derived’ atoms. Observe that both graphs have strictly non-intersecting atoms in rule
heads of distinct units. 2

As units of evaluation graphs can be arbitrary lde-safe programs, we clearly have the following property.

Proposition 3 For every lde-safe HEX program P , some evaluation graph E exists.

Indeed, we can simply put P into a single unit to obtain a valid evaluation graph. Thus the HEX evaluation
approach based on evaluation graphs is applicable to all domain-expansion safe HEX programs.

5.1.1 Evaluation Graph Splitting

We next show that units and their predecessors in an evaluation graph correspond to generalized bottoms.
We then use this property to formulate an algorithm for unit-based, efficient evaluation of HEX-programs.

5See page 17 for the definition of notation gh(P).

INFSYS RR 15-01 21

a

b

c d

e

f g

fai(b) = {e}

fai(a) = {d, e}

Figure 6: First Ancestor Intersection units (FAIs) in an evaluation graph.

Given an evaluation graph E = (U,E), we write u < w, if a path from u to w exists in E , and u ≤ w if
either u < w or u = w.

For a unit u ∈ U , we denote by predsE(u) = {v ∈ U | (u, v) ∈ E} the set of units on which u (directly)
depends and by u< =

⋃
w∈U,u<w w the set of rules in all units on which u transitively depends; furthermore,

we let u≤ = u< ∪ u. Note that for a leaf unit u (i.e., u has no predecessors) we have predsE(u) = u< = ∅
and u≤ = u.

Theorem 3 For every evaluation graph E = (U,E) of a HEX-program Q and unit u ∈ U , it holds that u<

is a generalized bottom of u≤ wrt. R = {r ∈ u< | B(r) 6= ∅}.

Example 20 (ctd) In E1, u<2 = u1 and u≤2 = u1 ∪u2 and u<2 is a generalized bottom of u≤2 wrt. R =

{r1, r2, r4}. In E2, we have u<4 = u1 ∪u2 ∪u3 and u≤4 = Pswim and u<4 is a generalized bottom of
Pswim wrt. R = {r1, r2, r3, r4}. We can verify this on Definition 12: we have P = Pswim , B = u<4 =
{r1, r2, r3, r4, c6, c7, c8}, and R as above. Then R⊆B⊆P , and furthermore B \R = {c6, c7, c8} consists
of constraints none of which depends nonmonotonically on a rule in P \B = {r5}. 2

Theorem 4 Let E = (U,E) be an evaluation graph of a HEX-program Q and u ∈ U . Then for every unit
u′ ∈ predsE(u), it holds that u′≤ is a generalized bottom of the subprogram u< wrt. the rule splitting set
R = {r ∈ u′≤ | B(r) 6= ∅}.

Example 21 (ctd) In E1, we have u1 ∈ predsE1(u2); hence u≤1 = u1 is by Theorem 4 a generalized
bottom of u<2 = u1 wrt. R = {r1, r3, r4}. Furthermore, u2 ∈ predsE1(u3) and hence u≤2 = u1 ∪u2 is
a generalized bottom of u<3 = u1 ∪u2 wrt. R = {r1, r2, r3, r4, r5}. The case of E2 and u4 is less clear.
We have u2 ∈ predsE2(u4), thus by Theorem 4 u≤2 = u1 ∪u2 = {r1, r2, c8} is a generalized bottom of
u<4 = u1 ∪u2 ∪u3 wrt. R = {r1, r2}. Comparing against Definition 12, we have P = u1 ∪u2 ∪u3 and
B = u1 ∪u2; thus indeed R⊆B ⊆ P and no constraint in B \ R = {c8} depends nonmonotonically on
any rule in P \B = {r3, r4, c6, c7}. 2

5.1.2 First Ancestor Intersection Units

We will use the evaluation graph for model building; as syntactic dependencies reflect semantic dependen-
cies between units, multiple paths between units need attention. Of particular importance are first ancestor
intersection units, which are units where distinct paths starting at some unit meet first. More formally,

22 INFSYS RR 15-01

Definition 15 Given an evaluation graph E = (U,E) and units v 6= w ∈ U , we say that unit w is a first
ancestor intersection unit (FAI) of v, if paths p1 6= p2 from v to w exist in E that overlap only in v and w.
By fai(v) we denote the set of all FAIs of v.

Example 22 Figure 6 sketches an evaluation graph with dependencies a → b → c → e → f , a → d →
e → g, and b → d. We have that fai(a) = {d, e}, fai(b) = {e}, and fai(u) = ∅ for each u ∈ U \ {a, b}.
In particular, f and g are not FAIs of b, because all pairs of distinct paths from b to f or g overlap in more
than two units. 2

Note that for tree-shaped evaluation graphs, fai(v) = ∅ for each unit v as paths between nodes in a tree are
unique.

Example 23 (ctd) The evaluation graph E1 of Pswim is a tree (see Fig. 4), thus fai(u) = ∅ for u ∈
{u1, u2, u3}. In contrast, the evaluation graph E2 of Pswim (see Fig. 5) is not a tree; we have that fai(u4) =
{u1} and no other unit in E2 has FAIs. 2

We can build an evaluation graph E for a program P based on the dependency graph DG(P). Initially,
the units are set to the maximal strongly connected components of DG(P), and then units are iteratively
merged while preserving acyclicity and the conditions (a)-(d) of an evaluation graph; we will discuss some
existing heuristics in Section 6.2, while for details we refer to 46).

5.2 Interpretation Graph

We now define the Interpretation Graph (short i-graph), which is the foundation of our model building
algorithm. An i-graph is a labeled directed graph defined wrt. an evaluation graph, where each vertex is
associated with a specific evaluation unit, a type (input resp. output interpretation) and an set of ground
atoms.

We do not use interpretations themselves as vertices, as distinct vertices may be associated with the same
interpretation; still we call vertices of the i-graph interpretations.

We first define an auxiliary concept, formulate then conditions on it, and finally define the i-graph using
these conditions.

Definition 16 (Interpretation Structure) Let E = (U,E) be an evaluation graph for a program P . An
interpretation structure I for E is a directed acyclic graph I = (M,F, unit , type, int) where M ⊆ Iid is
from a countable set Iid of identifiers, and unit : M → U , type : M → {I, O}, and int : M → 2HBP are
total node labeling functions.

The following notation will be useful. Given unit u ∈ U in the evaluation graph associated with an i-graph
I, we denote by i -intsI(u) = {m∈M | unit(m) =u and type(m) = I} the input (i-)interpretations, and by
o-intsI(u) = {m∈M | unit(m) =u and type(m) = O} the output (o-)interpretations of I at unit u. For
every vertex m ∈M , we denote by

int+(m) = int(m) ∪
⋃
{int(m′) | m′ ∈M and m′ is reachable from m in I}

the expanded interpretation of m.
Given an interpretation structure I = (M,F, unit , type, int) for E = (U,E) and a unit u ∈ U , we

define the following properties:

INFSYS RR 15-01 23

unit

unit dependency

i-interpretation

o-interpretation

dependency

Violation! OK!

Figure 7: Interpretation Graphs: violation of the FAI condition on the left, correct situation on the right.

(IG-I) I-connectedness: for every m∈ o-intsI(u), |{m′ | (m,m′) ∈ F}| = 1 and m′ ∈ i -intsI(u) is an
i-interpretation at unit u;

(IG-O) O-connectedness: for every m ∈ i -intsI(u) and ui ∈ predsE(u), |{mi | (m,mi) ∈ F}| = 1 and
mi ∈ o-intsI(ui) (every mi is an o-interpretation at ui);

(IG-F) FAI intersection: let E ′ be the subgraph of E on the units reachable from u6 and for every m ∈
i -intsI(u), let I ′ be the subgraph of I reachable from m. Then I ′ contains exactly one o-interpretation
at each unit of E ′. (Note that both I and E are acyclic, hence I ′ does not include m and E ′ does not
include u.)

(IG-U) Uniqueness: for every m1 6= m2 ∈M such that unit(m1) = unit(m2) = u, we have int+(m1) 6=
int+(m2) (the expanded interpretations differ).

Definition 17 (Interpretation Graph) Let E = (U,E) be an evaluation graph for a program P . then an
interpretation graph (i-graph) for E is an interpretation structure I = (M,F, unit , type, int) that fulfills for
every unit u ∈ U the conditions (IG-I), (IG-O), (IG-F), and (IG-U).

Intuitively, the conditions make every i-graph ‘live’ on its associated evaluation graph: an i-interpreta-
tion must conform to all dependencies of the unit it belongs to, by depending on exactly one o-interpretation
at that unit’s predecessor units (IG-I); moreover an o-interpretation must depend on exactly one i-interpreta-
tion at the same unit (IG-O). Furthermore, every i-interpretation depends directly or indirectly on exactly one
o-interpretation at each unit it can reach in the i-graph (IG-F); this ensures that no expanded interpretation
int+(m) ‘mixes’ two or more i-interpretations resp. o-interpretations from the same unit. (The effect
of condition (IG-F) is visualized in Figure 7.) Finally, redundancies in an i-graph are ruled out by the
uniqueness condition (IG-U).

Example 24 (ctd.) Figure 8 shows an interpretation graph I2 for E2. (the symbol � is explained in Exam-
ple 30 below). The unit label is depicted as rectangle labeled with the respective unit. The type label is
indicated after interpretation names, i.e., m1/I denotes that interpretation m1 is an input interpretation.
For I2 the set Iid of identifiers is {m1, . . . ,m15}.

6I.e., E ′ is the subgraph of E induced by the set of units reachable from u, including u; in abuse of terminology, we briefly say
“the subgraph (of E) reachable from”

24 INFSYS RR 15-01

∅
m1/I

{swim(in)}
m2/O

{swim(out)}
m3/O

int(m2)

m4/I

int(m3)

m5/I

� ∅
m6/O

int(m2)

m7/I

int(m3)

m8/I

{go,
ngoto(margB),
goto(amalB)}

m9/O

{go,
ngoto(amalB),
goto(margB)}

m10/O

{go,
ngoto(gansD),
goto(altD)}

m11/O

{go,
ngoto(altD),
goto(gansD)}

m12/O

{go, goto(altD),ngoto(gansD)}
m13/I

{go, goto(gansD),ngoto(altD)}
m14/I

{need(loc, yogamat)}
m15/O

�

at
un

it
u
1

at unit u2
at unit u3

at
un

it
u
4

Figure 8: Interpretation graph I2 for E2

Dependencies are shown as arrows between interpretations. Observe that I-connectedness is fulfilled, as
every o-interpretation depends on exactly one i-interpretation at the same unit. O-connectedness is similarly
fulfilled, in particular consider i-interpretations of u4 in I2: u4 has two predecessor units (u2 and u3) and
every i-interpretation at u4 depends on exactly one o-interpretation at u2 and exactly one o-interpretation
at u3. The condition on FAI intersection could only be violated by i-interpretations at u4. We can verify
that from both m13 and m14 we can reach exactly one o-interpretation at each unit; hence the condition is
fulfilled. Uniqueness is satisfied, as in both graphs no unit has two output models with the same content. 2

Note that the empty graph is an i-graph. This is by intent, as our model building algorithm will progress
from an empty i-graph to one with interpretations at every unit, precisely if the program has an answer set.

5.2.1 Join

We will build i-graphs by adding one vertex at a time, always preserving the i-graph conditions. Adding an
o-interpretation requires to add a dependency to one i-interpretation at the same unit. Adding an i-interpre-
tation similarly requires addition of dependencies. However this is more involved because condition (IG-F)
could be violated. Therefore, we next define an operation that captures all necessary conditions.

We call the combination of o-interpretations which yields an i-interpretation a ‘join’. Formally, the join
operation ‘ ./ ’ is defined as follows.

Definition 18 Let I = (M,F, unit , type, int) be an i-graph for an evaluation graph E = (V,E) of a
program P . Let u ∈ V be a unit, let predsE(u) = {u1, . . . , uk} be the predecessor units of u, and let mi ∈

INFSYS RR 15-01 25

o-intsI(ui), 1 ≤ i ≤ k, be an o-interpretation at ui. Then the join m1 ./ · · · ./ mk =
⋃

1≤i≤k int(mi) at
u is defined iff for each u′ ∈ fai(u) the set of o-interpretations at u′ that are reachable (in F) from some
o-interpretation mi, 1 ≤ i ≤ k, contains exactly one o-interpretation m′ ∈ o-intsI(u′).

Intuitively, a set of interpretations can only be joined if all interpretations depend on the same (and on a
single) interpretation at every unit.

Example 25 (ctd) In I2, i-interpretations m1, m4, m5, m7, and m8 are created by trivial join operations
with none or one predecessor unit. For m13 and m14, we have a nontrivial join: int(m13) = int(m6) ∪
int(m11) and the join is defined because fai(u4) = {u1}, and from m6 and m11 we can reach in I2 exactly
one o-interpretation at u1. Observe that the join m6 ./ m9 is not defined, as we can reach in I2 from
{m6,m9} the o-interpretations m2 and m3 at u1, and thus more than exactly one o-interpretation at some
FAI of u4. Similarly, the join m6 ./ m10 is undefined, as we can reach m2 and m3 at u1. 2

The result of a join is the union of predecessor interpretations; this is important for answer set graphs and
join operations on them, which comes next. Note that each leaf unit (i.e., without predecessors) has exactly
one well-defined join result, viz. ∅.

If we add a new i-interpretation from the result of a join operation to an i-graph and dependencies to
all participating o-interpretations, the resulting graph is again an i-graph; thus the join is sound wrt. to the
i-graph properties. Moreover, each i-interpretation that can be added to a i-graph while preserving the i-
graph conditions can be synthesized by a join; that is, the join is complete for such additions. This is a
consequence of the following result.

Proposition 4 Let I = (M,F, unit , type, int) be an i-graph for an evaluation graph E = (V, E) and u ∈
V with predsE(u) = {u1, . . . , uk}. Furthermore, let mi ∈ o-intsI(ui), 1 ≤ i ≤ k, such that no vertex
m ∈ i -intsI(u) exists such that {(m,m1), . . . , (m,mk)} ⊆ F . Then the join J = m1 ./ · · · ./ mk

is defined at u iff I ′ = (M ′, F ′, unit ′, type ′, int ′) is an i-graph for E where (a) M ′ = M ∪ {m′} for
some new vertex m′ ∈Iid \M , (b) F ′ = F ∪ {(m′,mi) | 1 ≤ i ≤ k}, (c) unit ′ = unit ∪ {(m′, u)},
(d) type ′ = type ∪ {(m′, I)}, and (e) int ′ = int ∪ {(m′, J)}.

Note that the i-graph definition specifies topological properties of an i-graph wrt. an evaluation graph.
In the following we extend this specification to the contents of interpretations.

5.3 Answer Set Graph

We next restrict i-graphs to answer set graphs such that interpretations correspond with answer sets of
certain HEX programs that are induced by the evaluation graph.

Definition 19 (Answer Set Graph) An answer set graph A = (M,F, unit , type, int) for an evaluation
graph E = (U,E) is an i-graph for E such that for each unit u ∈ U , it holds that

(a) {int+(m) | m∈ i -intsI(u)} ⊆ AS(u<), i.e., every expanded i-interpretation at u is an answer set of
u<;

(b) int+(m) | m∈ o-intsI(u)} ⊆ AS(u≤), i.e., every expanded o-interpretation at u is an answer set of
u≤; and

(c) for each m ∈ i -intsI(u), it holds that int(m) =
⋃

(m,mi)∈F int(mi).

26 INFSYS RR 15-01

Note that each leaf unit u, has u< = ∅, and thus ∅ is the only i-interpretation possible. Moreover, con-
dition (c) is necessary to ensure that an i-interpretation at unit u contains all atoms of answer sets of pre-
decessor units that are relevant for evaluating u. Furthermore, note that the empty graph is an answer set
graph.

Example 26 (ctd) The example i-graph I2 is in fact an answer set graph. First, int+(m1) = ∅ and u<1 = ∅
and indeed ∅ ∈ AS(∅) which satisfies condition (a). Less obvious is the case of o-interpretation m6 in I2:
int+(m6) = {swim(out)} and u≤2 = {r1, r2, c8}; as c8 kills all answer sets where money is required,
AS({r1, r2, c8}) = {{swim(out)}}; hence int+(m6) is the only expanded interpretation of an o-interpre-
tation possible at u2. Furthermore, the condition (IG-U) on i-graphs implies that m6 is the only possible
o-interpretation at u2. Consider next m13:

u<4 = {r1, r2, r3, r4, c6, c7, c8} and

int+(m13) = {go, goto(altD),ngoto(gansD), swim(out)}.

The two answer sets of u<4 are {go, goto(altD),ngoto(gansD), swim(out)},
and {go, goto(gansD), ngoto(altD), swim(out)}, and int+(m13) is one of them; the other one is
int+(m14). Finally

int+(m15) = {swim(out), goto(altD), go,ngoto(gansD),need(loc, yogamat)},

which is the single answer set of u≤4 = Pswim . 2

Similarly as for i-graphs, the join is a sound and complete operation to add i-interpretations to an answer
set graph.

Proposition 5 LetA = (M,F, unit , type, int) be an answer set graph for an evaluation graph E = (V,E)
and let u ∈ V with predsE(u) = {u1, . . . , uk}. Furthermore, let mi ∈ o-intsA(ui), 1 ≤ i ≤ k, such
that no m ∈ i -intsA(u) with {(m,m1), . . . , (m,mk)} ⊆ F exists. Then the join J = m1 ./ · · · ./ mk is
defined at u iff A′ = (M ′, F ′, unit ′, type ′, int ′) is an answer set graph for E where (a) M ′ = M ∪ {m′}
for some new vertex m′ ∈Iid \M , (b) F ′ = F ∪ {(m′,mi) | 1≤ i≤ k}, (c) unit ′ = unit ∪ {(m′, u)},
(d) type ′ = type ∪ {(m′, I)}, and (e) int ′ = int ∪ {(m′, J)}.

Example 27 (ctd) Imagine that I2 has no interpretations at u4. The following candidate pairs of o-inter-
pretations exist for creating i-interpretations at u4: m6 ./ m9, m6 ./ m10, m6 ./ m11, and m6 ./ m12. A
seen in Example 25, m13 = m6 ./ m11 and m14 = m6 ./ m12 are the only joins at u4 that are defined. In
Example 26 we have seen that AS(u<4) = {int+(m13), int

+(m14)}, and due to (IG-U), we cannot have
additional i-interpretations with the same content. 2

5.3.1 Complete Answer Set Graphs

We next introduce a notion of completeness for answer set graphs.

Definition 20 LetA = (M,F, unit , type, int) be an answer set graph for an evaluation graph E = (U,E)
and let u ∈ U . Then

• A is input-complete for u, if {int+(m) | m ∈ i -intsA(u)} = AS(u<), and

• A is output-complete for u, if {int+(m) | m ∈ o-intsA(u)} = AS(u≤).

INFSYS RR 15-01 27

If an answer set graph is complete for all units of its corresponding evaluation graph, answer sets of the
associated program can be obtained as follows.

Theorem 5 Let E = (U,E), where U = {u1, . . . , un}, be an evaluation graph of a program P , and let
A = (M,F, unit , type, int) be an answer set graph that is output-complete for every unit u ∈ U . Then

AS(P) =
{⋃n

i=1 int(mi) | mi ∈ o-intsA(ui), 1 ≤ i ≤ n, |o-intsA′(ui)| = 1
}
, (4)

where A′ is the subgraph of A consisting of all interpretations that are reachable in A from some interpre-
tation m1, . . . ,mn.

Example 28 (ctd) In I2 we first choose m15 ∈ o-ints(u4), which is the only o-interpretation at u4. The
subgraph reachable from m15 must contain exactly one o-interpretation at each unit; we thus must choose
every o-interpretations m such that m15 →+ m. Hence we obtain{

int(m3) ∪ int(m6) ∪ int(m11) ∪ int(m15)
}

=
{
{swim(out)} ∪ ∅ ∪ {goto(altD),ngoto(gansD), go}∪ {need(loc, yogamat)}

}
=
{
{swim(out), goto(altD),ngoto(gansD), go,need(loc, yogamat)}

}
which is indeed the set of answer sets of Pswim . 2

The rather involved set construction in (4) establishes a relationship between answer sets of a program and
complete answer set graphs that resembles condition (IG-F) of i-graphs. To obtain a more convenient way to
enumerate answer sets, we can extend an evaluation graph always with a single void unit ufinal that depends
on all other units in the graph (i.e., (ufinal , u) ∈ E for each u ∈ U \ {ufinal}), which we call a final unit; the
answer sets of P correspond then directly to i-interpretations at ufinal . Formally,

Proposition 6 LetA = (M,F, unit , type, int) be an answer set graph for an evaluation graph E = (U,E)
of a program P , where E contains a final unit ufinal , and assume thatA is input-complete for U and output-
complete for U \ {ufinal}. Then

AS(P) = {int(m) | m ∈ i -intsA(ufinal)}. (5)

Expanding i-interpretations at ufinal is not necessary, as ufinal depends on all other units; thus for every
m ∈ i -intsA(ufinal) it holds that int+(m) = int(m).

We will use the technique with ufinal for our model enumeration algorithm; as the join condition must be
checked anyways, this technique is an efficient and simple method for obtaining all answer sets of a program
using an answer set graph.

5.4 Answer Set Building

Thanks to the results above, we can obtain the answer sets of a HEX-program from any answer set graph for
it. To build an answer set graph, we proceed as follows. We start with an empty graph, obtain o-interpre-
tations by evaluating a unit on an i-interpretation, and then gradually generate i-interpretations by joining
o-interpretations of predecessor units in an evaluation graph at hand.

Towards an algorithm for evaluating a HEX-program based on an evaluation graph, we use a generic
grounding algorithm GROUNDHEX for lde-safe programs, and a solving algorithm
EVALUATEGROUNDHEX which returns for a ground HEX-program P its answer sets AS(P). We assume
that they satisfy the following properties.

28 INFSYS RR 15-01

Algorithm 1: EVALUATELDESAFE
Input: A liberally de-safe HEX-program P , an input interpretation I
Output: All answer sets of P ∪ facts(I) without I
// add input facts and ground, cf. (15)

P ′ ← GROUNDHEX(P ∪ facts(I))
// evaluate the ground program, cf. (16),
// and perform output projection

return
{
I′ \ I | I′ ∈ EVALUATEGROUNDHEX(P ′)

}

Algorithm 2: BUILDANSWERSETS
Input: E = (V,E): evaluation graph for HEX program P , which contains a unit ufinal that depends on all other units in V
Output: a set of all answer sets of P
M := ∅, F := ∅, unit := ∅, type := ∅, int := ∅, U := V

(a) while U 6= ∅ do
choose u ∈ U s.t. predsE (u) ∩ U = ∅
let {u1, . . . , uk} = predsE (u)
if k = 0 then

(b) m := max(M) + 1
M := M ∪ {m}
unit(m) := u, type(m) := I, int(m) := ∅

else
(c) for m1 ∈ o-ints(u1), . . . ,mk ∈ o-ints(uk) do

if J = m1 ./ · · · ./ mk is defined then
m := max(M) + 1
M := M ∪ {m}, F := F ∪ {(m,mi) | 1 ≤ i ≤ k}
unit(m) := u, type(m) := I, int(m) := J

(d) if u = ufinal then
return i-ints(ufinal)

(e) for m′ ∈ i-ints(u) do
O := EVALUATELDESAFE(u, int(m′))
for o ∈ O do

m := max(M) + 1

M := M ∪ {m}, F := F ∪ {(m,m′)}
unit(m) := u, type(m) := O, int(m) := o

(f) U := U \ {u}

Property 1 Given an lde-safe program P , GROUNDHEX(P) returns a finite ground program such that
AS(P) = AS(GROUNDHEX(P)).

Property 2 Given a finite ground HEX-program P , EVALUATEGROUNDHEX(P) = AS(P).

Concrete such algorithms are given in (15) and (16), respectively. The idea of the grounding algorithm is
to evaluate the external atoms in the program under a (finite) number of relevant inputs in order to determine
the relevant set of constants in advance, while the solving algorithm is based on conflict-driven clause
learning (CDCL) and lifts the work of 25) from ordinary to HEX programs.

By composing the two algorithms, we obtain Algorithm 1 for evaluating a single unit. Formally, it has
the following property.

Proposition 7 Given an lde-safe HEX-program P and an input interpretation I , Algorithm 1 returns the set
{I ′ \ I | I ′ ∈ AS(P ∪ facts(I))}, i.e., the answer sets of P augmented with facts for the input I , projected
to the non-input.

We are now ready to formulate an algorithm for evaluating HEX programs that have been decomposed
into an evaluation graph.

To this end, we build first an evaluation graph E and then compute gradually an answer set graph A =
(M,F, unit , type, int) based on E , proceeding along already evaluated units towards the unit ufinal . Algo-
rithm 2 shows the model building algorithm in pseudo-code, in which the positive integers N = {1, 2, . . .}

INFSYS RR 15-01 29

are used as identifiers Iid and max(M) is maximum in any set M ⊆ N where, by convention, max(∅) = 0.
Intuitively, the algorithm works as follows. The set U contains units for whichA is not yet output-complete
(see Definition 20); we start with an empty answer set graph A, thus initially U = V . In each iteration
of the while loop (a), a unit u that is not output-complete and depends only on output-complete units is
selected. The first for loop (c) makes u input-complete; if u is the final unit, the answer sets are returned
in (d), otherwise the second for loop (e) makes u output-complete, and then u is removed from U . Each
iteration makes one unit input- and output-complete; hence when the algorithm reaches ufinal and makes it
input-complete, all answer sets can directly be returned in (d). Formally, we have

Theorem 6 Given an evaluation graph E = (V,E) of a HEX program P , BUILDANSWERSETS(E) returns
AS(P).

A run of the algorithm on our running example using the evaluation graph E2 extended with a final unit
is given in Appendix B.

5.4.1 Model Streaming

Algorithm BUILDANSWERSETS as described above keeps all answer sets in memory, and it evaluates each
unit only once wrt. every possible i-interpretation. This may lead to a resource bound excess, as in general
an exponential number of answer sets respectively interpretations at evaluation units are possible. However,
keeping the whole answer set graph in memory is not necessary for computing all answer sets.

We have realized a variant of Algorithm BUILDANSWERSETS that uses the same principle of construct-
ing an answer set graph, interpretations are created at a unit on demand when they are requested by units
that depend on it; furthermore, the algorithm keeps basically only one interpretation at each evaluation unit
in memory at a time, which means that interpretations are provided in a streaming fashion one by one, and
likewise the answer sets of the program at the unit ufinal , where the model building starts. Such answer
set streaming is particularly attractive for applications, as one can terminate the computation after obtaining
sufficiently many answer sets. On the other hand, it comes at the cost of potential re-evaluation of units wrt.
the same i-interpretation, as we need to trade space for time. However, in practice this algorithm works well
and is the one used in the dlvhex prototype. We describe this algorithm in Appendix C.

6 Implementation

In this section we give some details on the implementation of the techniques. Our prototype system is called
dlvhex; it is written in C++ and online available as open-source software.7 The current version 2.4.0 was
released in September 2014.

We first describe the general architecture, the major components, and their interplay. Then we give
an overview about the existing heuristics. For details on the usage of the system, we refer to the website;
an exhaustive description of the supported command-line parameters is output when the system is called
without parameters.

6.1 System Architecture

The dlvhex system architecture is shown in Figure 9. The arcs model both control and data flow within the
system. The evaluation of a HEX-program works as follows.

7http://www.kr.tuwien.ac.at/research/systems/dlvhex

30 INFSYS RR 15-01

First, the input program is read from the file system or from standard input and passed to the evaluation
framework 1©. The evaluation framework creates then an evaluation graph depending on the chosen evalu-
ation heuristics. This results in a number of interconnected evaluation units. While the interplay of the units
is managed by the evaluation framework, the individual units are handled by model generators of different
kinds.

Each instance of a model generator takes care of a single evaluation unit, receives input interpretations
from the framework (which are either output by predecessor units or come from the input facts for leaf
units), and sends output interpretations back to the framework 2©, which manages the integration of the
latter to final answer sets.

Internally, the model generators make use of a grounder and a solver for ordinary ASP programs. The
architecture of our system is flexible and supports multiple concrete backends that can be plugged in. Cur-
rently it supports dlv, gringo 4.4.0 and clasp 3.1.0, as well as an internal grounder and a solver that were
built from scratch (mainly for testing purposes); they use basically the same core algorithms as gringo and
clasp, but without optimizations. The reasoner backends gringo and clasp are statically linked to our sys-
tem; thus no interprocess communication is necessary. The model generator within the dlvhex core sends a
non-ground program to the HEX-grounder, and receives a ground program 3©. The HEX-grounder in turn
uses an ordinary ASP grounder as submodule 4© and accesses external sources to handle value invention 5©.
The ground-program is then sent to the solver and answer sets of the ground program (i.e. candidate com-
patible sets) are returned 6©. Note that the grounder and the solver are separated and communicate only via
the model generator; this is in contrast to previous dlvhex versions, where the external grounder and solver
formed a single unit (i.e., the non-ground program was sent and the answer sets were retrieved). Separating
the two units became necessary as the dlvhex core needs access to the ground program; otherwise important
structural information, e.g. cyclicity, would be hidden.

The solver backend makes callbacks to the post propagator in the dlvhex core once a model has been
found or after unit and unfounded set propagation has been finished (actually, with dlv backend callbacks
occur only after a candidate compatible set has been found, but not during model building). During the
callback, a complete or partial model is sent from the solver backend to the post propagator, and learned
nogoods are sent back to the external solver 7©. For clasp as backend, we exploit its SMT interface, which
was previously used for the special case of constraint answer set solving (22). The post propagator has then
two key tasks: compatibility checking with learning and unfounded set detection. Compatibility checking,
as formalized by 14), checks whether the guesses of the external atom replacements by the ordinary ASP
solver coincide with the actual values of the external source. This requires calls to the plugins implementing
the external sources. The input list is sent to the external source, and the truth values and possibly learned
nogoods are returned to the post propagator 9©. Moreover, the post propagator also sends the (complete or
partial) model to the unfounded set checker (UFS checker) to find unfounded sets that are not detected by the
ordinary ASP solver (i.e., caused by external sources). The UFS checker employs a SAT solver 11©, which
can either be clasp or the internal solver, and possibly returns nogoods learned from unfounded sets to the
post propagator 8©. UFS detection also needs to call the external sources for guess verification, as shown by
16) 10©. The post propagator sends all learned nogoods back to the ASP solver. This ensures that eventually
only valid answer sets arrive at the model generator 6©.

Finally, after the evaluation framework has built the final answer sets from the output interpretations of
the individual evaluation units, they are output to the user 12©.

Example 29 The program from Example 2 is encoded in file swimming.hex as follows, where as in the
dlv language :- stands for← and the letter v for ∨.

INFSYS RR 15-01 31

HEX-
Program

Evaluation
Framework

Answer
Sets

Model
Generators

ASP Solver

ASP
Grounder

HEX-
Grounder

Post
Propagator

UFS-
Checker

SAT Solver

Plugins

dlvhex core

1

2

3

4

5

6

7

8

9 10

11

12

Figure 9: Architecture of dlvhex

swim(in) v swim(out).
need(inout, C) :- &rq[swim](C).
goto(X) v ngoto(C) :- swim(P), location(P, C).
go :- goto(X).
need(loc, C) :- &rq[goto](C).
:- goto(X), goto(Y), X != Y.
:- not go.
:- need(X, money).

6.2 Heuristics

As for creating evaluation graphs, several heuristics have been implemented. A heuristics starts with the
rule dependency graph as by Definition 10 and then acyclically combines nodes into units.

Some heuristics are described in the following.

H0 is a ‘trivial’ heuristics that makes units as small as possible, which is useful for debugging, however
this generates the largest possible number of evaluation units and therefore incurs a large overhead.

H1 is the evaluation heuristics of the dlvhex prototype version 1. H1 makes units as large as possible and
has several drawbacks as discussed above.

H2 is a simple evaluation heuristics which has the goal of finding a compromise between the H0 and H1 .

32 INFSYS RR 15-01

It places rules into units as follows:

(i) it puts rules r1, r2 into the same unit whenever r1 →m,n s and r2 →m,n s for some rule s and there is
no rule t such that exactly one of r1, r2 depends on t;

(ii) it puts rules r1, r2 into the same unit whenever s→m,n r1 and s→m,n r2 for some rule s and there is
no rule t such that t depends on exactly one of r1, r2; but

(iii) it never puts rules r, s into the same unit if r contains external atoms and r →m,n s.

Intuitively, H2 builds an evaluation graph that puts all rules with external atoms and their successors into one
unit, while separating rules creating input for distinct external atoms. This avoids redundant computation
and joining unrelated interpretations.
H3 is a heuristics for generating a good generalized evaluation graph by iteratively merging units. It aims
at two opposing goals: (1) minimizing the number of units, and (2) splitting the program whenever a de-
relevant nonmonotonic external atom would receive input from the same unit. H3 greedily gives preference
to (1) and is motivated by the following considerations.

The grounding algorithm by 15) evaluates the external sources under all interpretations such that the set
of observed constants is maximized. While monotonic and antimonotonic input atoms are not problematic
(the algorithm can simply set all to true resp. false), nonmonotonic parameters require an exponential number
of evaluations in general. Thus, although program decomposition is not strictly necessary, it is still useful
in such cases as it restricts grounding to those interpretations that are actually relevant in some answer set.
However, on the other hand it can be disadvantageous for propositional solving algorithms such as those in
(14). Program decomposition can be seen as a hybrid between traditional and lazy grounding (cf. e.g. 41)),
as program parts are instantiated that are larger than single rules but smaller than the whole program.

6.3 Experimental Results

In this section, we evaluate the model-building framework empirically. To this end, we compare the follow-
ing configurations. In the old column, we use the previous evaluation method before the framework was
developed (48). This method also makes use of program decomposition. However, in contrast to our new
framework the decomposition is based on atom dependencies rather than rule dependencies, and the decom-
position strategy is hard-coded and not customizable. This evaluation method corresponds to heuristics H1
in our new framework and can thus be emulated.

In the w/o framework column, we present the results without application of the framework using the
grounding algorithm by 15). Note that before this grounding algorithm was developed, a direct evaluation
was not possible since program decomposition was necessary for grounding purposes (at that time using
the strategy by 48) based on atom dependencies). With the new grounding algorithm, decomposition is not
necessary anymore, but still useful as the results in the new column show, where we present the results when
the default heuristics of the new framework is used.

The configuration of the grounding algorithm and the solving algorithm (e.g. conflict-driven learning
strategies) also influence the results. Moreover, in addition to the default heuristics of framework, other
heuristics have been developed as well and the best selection of the heuristics often depends on the config-
uration of the grounding and the solving algorithm. Since they were used as black boxes in Algorithm 1,
an exhaustive experimental analysis of the system is beyond the scope of this paper and would require an
in-depth description of these algorithms. Thus, we confine the discussion to the default settings, which suf-
fices to show that the new framework can speed up the evaluation significantly. For an in depth discussion,

INFSYS RR 15-01 33

Topology and First Answer Set All Answer Sets
Instance Size old w/o framework new old w/o framework new
d-7-7-3-3 (10) 1.23 (0) 0.29 (0) 0.38 (0) 4.93 (0) 0.76 (0) 0.79 (0)
d-7-7-4-4 (10) 18.43 (0) 1.09 (0) 0.76 (0) 50.78 (0) 3.39 (0) 1.80 (0)
d-7-7-5-5 (10) 94.18 (1) 3.60 (0) 1.52 (0) 289.35 (4) 20.21 (0) 4.97 (0)
h-9-9-3-3 (10) 83.17 (1) 3.77 (0) 0.70 (0) 300.96 (4) 28.67 (0) 2.11 (0)
h-9-9-4-4 (10) 389.74 (6) 30.56 (0) 2.14 (0) 555.94 (9) 335.11 (5) 12.56 (0)
r-7-7-4-4 (10) 39.27 (0) 2.82 (0) 0.33 (0) 366.17 (5) 57.26 (0) 2.06 (0)
r-7-7-5-5 (10) 389.88 (6) 105.80 (1) 0.93 (0) 600.00 (10) 377.37 (5) 4.39 (0)
r-7-8-5-5 (10) 226.04 (3) 25.11 (0) 0.57 (0) 541.80 (9) 317.64 (5) 3.99 (0)
r-7-9-5-5 (10) 355.37 (5) 145.99 (2) 0.87 (0) 600.00 (10) 458.14 (7) 5.42 (0)
r-8-7-5-5 (10) 502.64 (8) 329.47 (5) 1.21 (0) 555.26 (9) 443.15 (7) 5.84 (0)
r-8-8-5-5 (10) 390.81 (6) 201.08 (3) 1.00 (0) 600.00 (10) 495.41 (8) 5.38 (0)
z-7-7-3-3 (10) 2.34 (0) 0.32 (0) 0.44 (0) 9.17 (0) 1.13 (0) 1.00 (0)
z-7-7-4-4 (10) 33.32 (0) 1.58 (0) 1.07 (0) 182.44 (2) 9.00 (0) 2.67 (0)
z-7-7-5-5 (10) 164.33 (2) 12.69 (0) 3.52 (0) 502.49 (8) 89.01 (1) 6.90 (0)

Table 1: MCS experiments: variable topology (d, h, r, z) and instance size.

we refer to 16 (16; 15) and 46), where the efficiency was evaluated using a variety of applications including
planning tasks (e.g. robots searching an unknown area for an object, tour planning), computing extensions
of abstract argumentation frameworks, inconsistency analysis in multi-context systems, and reasoning over
description logic knowledge bases.

We discuss here two benchmark problems, which we evaluated on a Linux server with two 12-core
AMD 6176 SE CPUs with 128GB RAM running an HTCondor load distribution system8 that ensures robust
runtimes (i.e., multiple runs of the same instance have negligible deviations) and dlvhex version 2.4.0. The
grounder and solver backends for all benchmarks are gringo 4.4.0 and clasp 3.1.1. For each instance, we
limited the CPU usage to two cores and 8GB RAM. The timeout for each instance was 600 seconds. Each
line shows the average runtimes over all instances of a certain size, where each timeout counts as 600
seconds. Numbers in parentheses are the numbers of instances of respective size in the leftmost column and
the numbers of timeout instances elsewhere. The generators, instances and external sources are available at
http://www.kr.tuwien.ac.at/research/projects/hexhex/hexframework.

6.3.1 Multi-Context Systems (MCS)

The MCS benchmarks originate in the application scenario of enumerating output-projected equilibria (i.e.,
global models) of a given multi-context system (MCS) (cf. Section 2.3.2). Each instance comprises 7–9
contexts (propositional knowledge bases) whose local semantics is modeled by external atoms; roughly
speaking, they single out assignments to the atoms of a context occurring in bridge rules such that local
models exist. For each context, 5–10 such atoms are guessed and bridge rules, which are modeled by
ordinary rules, are randomly constructed on top. The MCS instances were generated using the DMCS (2)
instance generator, with 10 randomized instances for different link structure between contexts (diamond (d),
house (h), ring (r), zig-zag (z)) and system size; they have between 4 and about 20,000 answer sets, with an
average of 400. We refer to (2) and (49) for more details on the benchmarks and the HEX-programs.

Table 1 shows the experimental results: computation with the old method often exceeds the time limit,
while the new method H2 manages to enumerate all solutions of all instances. Monolithic evaluation without
decomposition shows a performance between the old and new method. These results show that our new
evaluation method is essential for using HEX to computationally realize the MCS application.

8http://research.cs.wisc.edu/htcondor

34 INFSYS RR 15-01

Instance Size First Answer Set All Answer Sets
old w/o framework new old w/o framework new

1 (1) 2.84 (0) 3.14 (0) 2.78 (0) 2.73 (0) 3.14 (0) 2.79 (0)
2 (1) 6.13 (0) 7.18 (0) 4.90 (0) 6.05 (0) 7.17 (0) 4.88 (0)
3 (1) 10.18 (0) 12.30 (0) 8.32 (0) 10.25 (0) 12.35 (0) 8.37 (0)
4 (1) 15.92 (0) 18.66 (0) 12.12 (0) 15.86 (0) 18.85 (0) 12.16 (0)
5 (1) 26.06 (0) 28.47 (0) 17.17 (0) 26.23 (0) 28.35 (0) 17.06 (0)
6 (1) 47.06 (0) 45.71 (0) 23.39 (0) 46.84 (0) 45.62 (0) 23.26 (0)
7 (1) 92.76 (0) 79.41 (0) 31.19 (0) 96.56 (0) 79.82 (0) 31.04 (0)
8 (1) 198.59 (0) 155.10 (0) 37.85 (0) 199.74 (0) 155.26 (0) 38.06 (0)
9 (1) 600.00 (1) 600.00 (1) 46.61 (0) 600.00 (1) 600.00 (1) 46.75 (0)

10 (1) 600.00 (1) 600.00 (1) 57.48 (0) 600.00 (1) 600.00 (1) 57.40 (0)
11 (1) 600.00 (1) 600.00 (1) 68.98 (0) 600.00 (1) 600.00 (1) 69.45 (0)
12 (1) 600.00 (1) 600.00 (1) 84.41 (0) 600.00 (1) 600.00 (1) 84.11 (0)
13 (1) 600.00 (1) 600.00 (1) 99.55 (0) 600.00 (1) 600.00 (1) 99.52 (0)
14 (1) 600.00 (1) 600.00 (1) 117.39 (0) 600.00 (1) 600.00 (1) 117.15 (0)
15 (1) 600.00 (1) 600.00 (1) 138.45 (0) 600.00 (1) 600.00 (1) 137.51 (0)
16 (1) 600.00 (1) 600.00 (1) 163.12 (0) 600.00 (1) 600.00 (1) 158.43 (0)
17 (1) 600.00 (1) 600.00 (1) 184.99 (0) 600.00 (1) 600.00 (1) 181.94 (0)
18 (1) 600.00 (1) 600.00 (1) 208.83 (0) 600.00 (1) 600.00 (1) 210.82 (0)
19 (1) 600.00 (1) 600.00 (1) 236.98 (0) 600.00 (1) 600.00 (1) 237.45 (0)
20 (1) 600.00 (1) 600.00 (1) 267.54 (0) 600.00 (1) 600.00 (1) 268.60 (0)
21 (1) 600.00 (1) 600.00 (1) 600.00 (1) 600.00 (1) 600.00 (1) 600.00 (1)

Table 2: RSTRACK experiments: variable number of conference tracks, single answer set.

6.3.2 Reviewer Selection (RS)

Our second benchmark is Reviewer Selection (RS): we represent c conference tracks, r reviewers and p
papers. Papers and reviewers are assigned to conference tracks, and there are conflicts between reviewers
and papers, some of which are given by external atoms. We consider two scenarios: RSTRACK and
RSPAPER. They are designed to measure the effect of external atoms on the elimination of a large number of
answer set candidates; in contrast to the MCS experiments we can control this aspect in the RS experiments.

In RSTRACK we vary the number c of conference tracks, where each track has 20 papers and 20 review-
ers. Each paper must get two reviews, and no reviewer must get more than two papers. Conflicts are dense
such that only one valid assignment exists per track, hence each instance has exactly one answer set, and
in each track two conflicts are external. For each number c there is only one instance because RSTRACK

instances are not randomized. The results of RSTRACK are shown in Table 2: runtimes of the old evaluation
heuristics (H1) grow fastest with size, without using decomposition grows slightly slower but also reaches
timeout at size 9. Only the new decomposition (H2 heuristics) can deal with size 20 without timeout. Find-
ing the first answer set and enumerating all answer sets show very similar times, as RSTRACK instances
have a single answer set and finding it seems hard.

In RSPAPER we fix the number of tracks to c= 5; we vary the number p of papers in each track and
set the number of reviewers to r= p. Each paper must get three reviews and each reviewer must not get
more than three papers assigned. Conflicts are randomized and less dense than in RSTRACK: the number
of answer sets is greater than one and does not grow with the instance size. Over all tracks and papers,
2p randomly chosen conflicts are external, and we generate 10 random instances per size and report results
averaged per instance size in Table 3. As clearly seen, our new method is always faster than the other
methods, and evaluation without a decomposition framework performs slightly better than the old method.
Different from RSTRACK, we can see a clear difference between finding the first answer set and enumerating
all answer sets as RSPAPER instances have more than one answer set.

To confirm that the new method is geared towards handling many external atoms, we conducted also

INFSYS RR 15-01 35

Instance Size First Answer Set All Answer Sets
old w/o framework new old w/o framework new

5 (10) 1.06 (0) 0.28 (0) 0.21 (0) 2.25 (0) 0.43 (0) 0.23 (0)
8 (10) 8.76 (0) 2.73 (0) 0.38 (0) 14.73 (0) 4.54 (0) 0.44 (0)

11 (10) 108.70 (1) 83.26 (1) 0.98 (0) 171.01 (2) 104.84 (1) 1.28 (0)
14 (10) 180.99 (2) 125.83 (1) 2.08 (0) 299.22 (4) 245.62 (3) 2.67 (0)
17 (10) 418.92 (6) 364.95 (5) 5.15 (0) 549.01 (9) 513.21 (8) 8.14 (0)
20 (10) 485.35 (8) 453.39 (7) 7.32 (0) 507.66 (8) 501.74 (8) 14.45 (0)
23 (10) 542.03 (9) 508.75 (8) 13.91 (0) 600.00 (10) 600.00 (10) 23.16 (0)
26 (10) 600.00 (10) 600.00 (10) 33.20 (0) 600.00 (10) 600.00 (10) 154.51 (2)
29 (10) 600.00 (10) 600.00 (10) 60.78 (0) 600.00 (10) 600.00 (10) 108.03 (0)
32 (10) 600.00 (10) 600.00 (10) 129.95 (0) 600.00 (10) 600.00 (10) 315.56 (4)
35 (10) 600.00 (10) 600.00 (10) 136.84 (0) 600.00 (10) 600.00 (10) 302.90 (3)
38 (10) 600.00 (10) 600.00 (10) 308.92 (3) 600.00 (10) 600.00 (10) 441.06 (6)
41 (10) 600.00 (10) 600.00 (10) 421.69 (6) 600.00 (10) 600.00 (10) 529.80 (8)
44 (10) 600.00 (10) 600.00 (10) 470.61 (7) 600.00 (10) 600.00 (10) 553.19 (9)
47 (10) 600.00 (10) 600.00 (10) 485.60 (7) 600.00 (10) 600.00 (10) 529.00 (8)
50 (10) 600.00 (10) 600.00 (10) 485.07 (7) 600.00 (10) 600.00 (10) 526.66 (8)

Table 3: RSPAPER experiments: variable number of papers/reviewers, multiple answer sets, randomized.

experiments with instances that had few external atoms for eliminating answer set candidates but many local
constraints. For such highly constrained instances, the new decomposition framework is not beneficial as it
incurs an overhead compared to the monolithic evaluation that increases runtimes.

6.3.3 Summary

The results demonstrate a clear improvement using the new framework; they can often be further improved
by fine-tuning the grounding and solving algorithm, and by customizing the default heuristics of the frame-
work, as discussed by 16 (16; 15), and 46). However, already the default settings yield results that are
significantly better than using the previous evaluation method or using no framework at all; note that the
latter requires an advanced grounding algorithm as by 15), which was not available at the time the initial
evaluation approach as by 48) was developed.

In conclusion, the evaluation framework in Section 5 pushes HEX-programs towards scalability for real-
istic instance sizes, which previous evaluation techniques missed.

7 Related Work and Discussion

We now discuss our results in the context of related work, and will address possible optimizations.

7.1 Related Work

7.1.1 External Sources

The dlv-ex system (6) was a pioneering work on value invention through external atoms in ASP. It supported
VI-restricted programs, which amount to HEX-programs under extensional semantics without higher-order
atoms and a strong safety condition that is subsumed by lde-safety. Answer set computation followed the
traditional approach on top of dlv, but used a special progressive grounding method (thus an experimental
comparison to solving, i.e., model building as in the focus of this paper, is inappropriate).

36 INFSYS RR 15-01

Also the clingcon system (40) is related, which enhances ASP with constraint atoms; this can be seen as
a special case of HEX-programs that focuses on a particular external source. As for evaluation, an important
difference to general external sources is that constraint atoms do not use value invention. The modularity
techniques from above are less relevant for this setting as grounding the overall program in one shot is
possible. However, this also fits into our framework as disabling decomposition in fact corresponds to a
dedicated (trivial) heuristics which keeps the whole program as a single unit.

We also remark that gringo and clasp use a concept called “external atoms” for realizing various appli-
cations such as constraint ASP solving as in clingcon and incremental solving (23). However, despite their
name they are different from external atoms in HEX-programs. In the former case, external atoms are ex-
cluded from grounding-time optimization such that these atoms are not eliminated even if their truth value
is deterministically false during grounding. This allows to add rules that found truth of such atoms in later
incremental grounding steps. In case of HEX the truth value is determined by external sources. Moreover
gringo contains an interface for Lua and Python functions that can perform computations during grounding.
HEX external atoms are more expressive: they cannot be evaluated during grounding because their semantics
is defined with respect to the answer set.

7.1.2 Rule Dependencies

In the context of answer set programming, dependency graphs over rules have been used earlier, e.g. by 35)
and 36). However, these works consider only ordinary ground programs, and furthermore the graphs are
used for characterizing and computing the answer sets of a program from these graphs. In contrast, we
consider nonground programs with and external atoms, and we use the graph to split the program into
evaluation units with the goal of modularly computing answer sets.

7.1.3 Modularity

Our work is naturally related to work on program modularity under stable model semantics, as targeted
by splitting sets (34) and descendants, with the work by 39) and 30) a prominent representative that lifted
them to modular programs with choice rules and disjunctive rules, by considering “symmetric splitting”.
Other works, e.g. by 33) go further to define semantics of systems of program modules, departing from a
mere semantics-preserving decomposition of a larger program into smaller parts, or consider multi-language
systems that combine modules in possibly different formalisms on equal terms (cf. e.g. 31) and 52)).

Comparing the works by 39) and 30) as, from a semantic decomposition perspective, the closest in this
group to ours, an important difference is that our approach works for non-ground programs and explicitly
considers possible overlaps of modules. It is tailored to efficient evaluation of arbitrary programs, rather than
to facilitate module-style logic programming with declarative specifications, or to provide compositional
semantics for modules beyond uni-lateral evaluation, as done by 31) and 52); for them, introducing values
outside the module domain (known as value invention) does not play a visible role. In this regard, it is in
line with previous HEX-program evaluation (20) and decomposition techniques to ground ordinary programs
efficiently (7).

7.1.4 Splitting Theorems

Our new splitting theorems compare to related splitting theorems as follows.
Theorem 1 is similar to Theorem 4.6.2 by 48); however, we do not use splitting sets on atoms, but

splitting sets on rules. Furthermore, 48) has no analog to Theorem 2.

INFSYS RR 15-01 37

The seminal Splitting Set Theorem by 34) divides the interpretation of P into disjoint sets X and Y ,
where X is an answer set of the ‘bottom’ gbA(P) ⊆ P and Y is an answer set of a ‘residual’ program
obtained from P \ gbA(P) and X . In the residual program, all references to atoms in X are removed, in
a way that it semantically behaves as if facts X were added to P \ gbA(P), while the answer sets of the
residual do not contain any atom in X . This works nicely for answer set programs, but it is problematic
when applied to HEX programs, because external atoms may depend on the bottom and on atoms in heads of
the residual program; hence, they cannot be eliminated from rule bodies. The only way to eliminate bottom
facts from the residual program would be to ”split” external atoms semantically into a part depending on
the bottom and the program remainder, and by replacing external atoms in rules with external atoms that
have been partially evaluated wrt. a bottom answer set. Technically, this requires to introduce new external
atoms, and formulating a splitting theorem for HEX programs with two disjoint interpretations X and Y is
not straightforward. Furthermore, such external atom splitting and partial evaluation might not be possible
in a concrete application scenario.

Different from the two splitting theorems recalled above, the Global Splitting Theorem by 20) does not
split an interpretation of the program P into disjoint interpretations X and Y , and thus should be compared
to our Theorem 2. However, the Global Splitting Theorem does not allow constraint sharing, and it involves
a residual program which specifies how external atoms are evaluated via ‘replacement atoms’, which lead
to extra facts D in the residual program that must be removed from its answer sets. Both the specification
of replacement atoms and the extra facts make the Global Splitting Theorem cumbersome to work with
when proving correctness of HEX encodings. Moreover, the replacement atoms are geared towards a certain
implementation technique which however is not mandatory and can be avoided.

Lemma 5.1 by 17) is structurally similar to our Theorem 2: answer sets of the bottom program are
evaluated together with the program depending on the bottom (here called the residual), hence answer sets
of the residual are answer sets of the original program. However, the result was based on atom dependencies
and did neither consider negation nor external atoms.

7.2 Possible Optimizations

Evaluation graphs naturally encode parallel evaluation plans. We have not yet investigated the potential
benefits of this feature in practice, but this property allows us to do parallel solving based on solver software
that does not have parallel computing capabilities itself (‘parallelize from outside’). This applies both to
programs with external atoms, as well as to ordinary ASP programs (i.w., without external atoms). Improv-
ing reasoning performance by decomposition has been investigated by 1), however, only wrt. monotonic
logics.

Improving HEX evaluation efficiency by using knowledge about domain restrictions of external atoms
has been discussed by 13). These rewriting methods yield partially grounded sets of rules which can easily be
distributed into distinct evaluation units by an optimizer. This directly provides efficiency gains as described
in the above work.

As a last remark on possible optimizations, we observe that the data flow between evaluation units can
be optimized using proper notions of model projection, such as in (24). Model projections would tailor input
data of evaluation units to necessary parts of intermediate answer sets; however, given that different units
might need different parts of the same intermediate input answer set, a space-saving efficient projection
technique is not straightforward.

38 INFSYS RR 15-01

8 Conclusion

HEX-programs extend answer set programs with access to external sources through an API-style interface,
which has been fruitfully deployed to various applications. Providing efficient evaluation methods for such
programs is a challenging but important endeavor, in order to enhance the practicality of the approach and to
make it eligible for a broader range of applications. In this direction, we have presented in this article a novel
evaluation method for HEX-programs based on modular decomposition. We have presented new results for
the latter using special splitting sets, which are more general than previous results and use rule sets as a basis
for splitting rather than sets of atoms as in previous approaches. Furthermore, we have presented an evalua-
tion framework which employs besides a traditional evaluation graph that consists of program components
and reflects syntactic dependencies among them, also a model graph whose nodes collect answer sets that
are combined and passed on between components. Using decomposition techniques, evaluation units can be
dynamically formed and evaluated in the framework using different heuristics, Moreover, the answer sets of
the overall program can be produced in a streaming fashion. The new approach leads in combination with
other techniques to significant improvements for a variety of applications, as demonstrated by 15 (15; 16)
and 46). Notably, while our results target HEX-programs, the underlying concepts and techniques are not
limited to them (e.g., to separate the evaluation and the model graph) and may be fruitfully transferred to
other rule-based formalisms.

8.1 Outlook

The work we presented can be continued in different directions. As for the prototype reasoner, a rather
straightforward extension is to support brave and cautious reasoning on top of HEX programs, while in-
corporating constructs like aggregates or preference constraints requires more care and efforts. Regarding
program evaluation, our general evaluation framework provides a basis for further optimizations and evalu-
ation strategies. Indeed, the generic notions of evaluation unit, evaluation graph and model graph allow to
specialize and improve our framework in different respects. First, evaluation units (which may contain du-
plicated constraints), can be chosen according to a proper estimate of the number of answer sets (the fewer,
the better); second, evaluation plans can be chosen by ad-hoc optimization modules, which may give pref-
erence to (a combination of) time, space, or parallelization conditions. Third, the framework is amenable to
a form of coarse-grained distributed computation at the level of evaluation units (in the style of 42)).

While modular evaluation is advantageous in many applications, it can also be counterproductive, as
currently the propagation of knowledge learned by conflict-driven techniques into different evaluation units
is not possible. In such cases, evaluating the program as a single evaluation unit is often also infeasible due
to the properties of the grounding algorithm, as observed by 15). Thus, another starting point for future work
is a tighter integration of the solver instances used to evaluate different units, e.g., by exchanging learned
knowledge. In this context, also the interplay of the grounder and the solver is an important topic.

A Proofs

Proof of Theorem 1 (Splitting Theorem). Given a set of ground atomsM and a set of rulesR, we denote
by M |R = M ∩ gh(R) the projection of M to ground heads of rules in R.

(⇒) Let M ∈ AS(P). We show that (1) M |R ∈ AS(R) and that (2) M ∈ AS(P \R ∪ facts(M |R)).
As for (1), we first show that M |R satisfies the reduct fRM |R , and then that M |R is indeed a minimal

model of fRM |R . M satisfies fPM and R ⊆ P . Observe that, by definition of FLP reduct, fRM ⊆ fPM .

INFSYS RR 15-01 39

By definition of rule splitting set, satisfiability of rules in R does not depend on heads of rules in P \R (due
to the restriction of external atoms to extensional semantics, this is in particular true for external atoms inR).
Therefore fRM |R = fRM , M satisfies fRM |R , and M |R satisfies fRM |R . For showing M |R ∈ AS(R), it
remains to show that M |R is a minimal model of fRM |R .

Assume towards a contradiction that some S ⊂ M |R is a model of fRM |R . Then there is a nonempty
set A = M |R \ S of atoms with A ⊆ gh(R). Let M? = M \ A. We next show that M? is a model of
fPM , which implies that M /∈ AS(P). Assume on the contrary that M? is not a model of fPM . Hence
there exists some rule r ∈ fPM such that H(r) ∩M? = ∅, B+(r) ⊆ M?, B−(r) ∩M? = ∅ and external
atoms in B+(r) (resp., B−(r)) evaluate to true (resp., false) wrt. M?. S agrees with M? on atoms from
gh(R), and S satisfies fRM |R . The truth values of external atoms in bodies of rules in R depends only on
atoms from gh(R), therefore external atoms in R evaluate to the same truth value wrt. S and M?. Therefore
r /∈ fRM |R and r ∈ f(P \ R)M . Since r ∈ P \ R, H(r) ⊆ gh(P \R), and because M and M? agree on
atoms from gh(P \R), H(r) ∩M? = ∅ from above implies that H(r) ∩M = ∅. Because r ∈ fPM , its
body is satisfied inM , and since its head has no intersection withM , we get that fPM is not satisfied byM ,
which is a contradiction. Therefore M? is a model of fPM . As M?⊂M , this contradicts our assumption
that M ∈ AS(P). Therefore S = M |R = X is a minimal model of fRM .

We next show that M satisfies the reduct f(P \R∪ facts(M |R))M , and then that it is indeed a minimal
model of the reduct. By the definition of reduct, f(P \R∪ facts(M |R))M = f(P \R)M ∪ facts(M |R). M
satisfies facts(M |R) because M |R ⊆M . Furthermore f(P \R)M ⊆ fPM , hence M satisfies f(P \R)M .
Therefore M satisfies f(P \R ∪ facts(M |R))M .

To show that M is a minimal model of f(P \R ∪ facts(M |R))M , assume towards a contradiction that
some S⊂M is a model of f(P \ R ∪ facts(M |R))M . Since facts(M |R) is part of the reduct, M |R ⊆ S,
therefore S|gh(R) = M |R. By definition of rule splitting set, satisfiability of rules in R does not depend on
heads of rules in P \R, hence S satisfies fRM . Because S satisfies f(P \R∪facts(M |R))M = f(P \R)M∪
facts(M |R), it also satisfies f(P \R)M . Since S satisfies both fRM , S satisfies fPM = f(P \R)M∪fRM .
This is a contradiction to M ∈ AS(P). Therefore S = M is a minimal model of f(P \R∪ facts(M |R))M .

(⇐) Let M ∈ AS(P \ R ∪ facts(X)) and let X ∈ AS(R). We first show that M satisfies fPM , and
then that it is a minimal model of fPM .

As factsX are part of the program P \R∪facts(X), and by definition of rule splitting set, P \R contains
no rule heads unifying with gh(R), hence we have X = M |R. Furthermore f(P \ R ∪ facts(X))M \
facts(X) ∪ fRM = fPM , and as M satisfies the left side, it satisfies the right side. To show that M is
a minimal model of fPM , assume S⊂M is a smaller model of fPM . By definition of reduct, S also
satisfies f(P \ R)M and fRM . Since R is a splitting set, satisfiability of rules in R does not depend
on heads of rules in P \ R, therefore fRM = fRM |R = fRX and S|gh(R) satisfies fRX . Since S ⊂
M , we have S|gh(R) ⊆ X . Because X is a minimal model of fRX , S|gh(R) ⊂ X is impossible and
S|gh(R) = X . Therefore S|gh(P\R) ⊂ M |gh(P\R). Because S satisfies f(P \ R)M and S|gh(R) = X , S
also satisfies f(P \R ∪ facts(X))M . Since S ⊂M , this contradicts the fact that M is a minimal model of
P \R ∪ facts(X). Therefore S = M is a minimal model of fPM . 2

Proof of Theorem 2 (Generalized Splitting Theorem). By definition of generalized bottom, the set
C = B \ R contains only constraints, therefore gh(B) = gh(R) and M |gh(B) = M |gh(R). As R ⊆ B and
B \R contains only constraints,AS(B) ⊆ AS(R). The only difference between Theorem 1 and Theorem 2
is, that for obtaining X , the latter takes additional constraints into account.

(⇒) It is sufficient to show that M |gh(B) does not satisfy the body of any constraint in C ⊆ P if M does
not satisfy the body of any constraint in P . Since B is a generalized bottom, no negative dependencies of

40 INFSYS RR 15-01

constraints C to rules in P \ B exist; therefore if the body of a constraint c ∈ C is not satisfied by M , the
body of c is not satisfied by M |gh(B). As M satisfies P , it does not satisfy any constraint body in P , hence
the projection M |gh(B) does not satisfy any constraint body in B \R.

(⇐) It is sufficient to show that an answer set of R that satisfies a constraint body in C also satisfies that
constraint body in P , which raises a contradiction. As constraints in C have no negative dependencies to
rules in P \ B, a constraint with a satisfied body in M |gh(R) also has a satisfied body in M , therefore the
result follows. 2

Proof of Proposition 1. Assume towards a contradiction that there exist a non-constraint r ∈ P , a rule
s ∈ P with r →m,n s, and u′ ∈ U |r, v′ ∈ U |s such that (u′, v′) /∈ E. Due to Definition 9, r →m,n s implies
that s has H(s) 6= ∅ and therefore that s is a non-constraint. Definition 14 (b) then implies that U |r = {u′}
and U |s = {v′} (non-constraints are present in exactly one unit).

Case (i): for r →n s, Definition 14 (c) specifies that for all u ∈ U |r and v ∈ U |s there exists an edge
(u, v) ∈ E, therefore also (u′, v′) ∈ E, which is a contradiction.

Case (ii): for r →m s, Definition 14 (d) specifies that some u ∈ U |r exists such that for every v ∈ U |s
there exists an edge (u, v) ∈ E; since U |r = {u′} and U |s = {v′}, it must hold that (u′, v′) ∈ E, which is
a contradiction. 2

Proof of Proposition 2. Given two distinct units u1, u2 ∈ U , assume towards a contradiction that some
γ ∈ gh(u1) ∩ gh(u2) exists. Then there exists some r ∈ u1 with α ∈ H(r) and α ∼ γ, and there exists
some s ∈ u2 with β ∈ H(s) and β ∼ γ. As α ∼ γ and β ∼ γ and γ is ground, we obtain α ∼ β; hence, by
Definition 9 (iii) we have r →m s and s→m r. As r and s have nonempty heads, they are non-constraints.
Thus by Proposition 1, there exist edges (u1, u2), (u2, u1) ∈ E. As an evaluation graph is acyclic, it follows
u1 = u2; this is a contradiction. 2

Proof of Proposition 3. For an lde-safe program P , the graph E = ({P}, ∅) is a valid evaluation graph.
2

Proof of Theorem 3. For any set of rules, let constr(S) = {r ∈ S | B(r) = ∅} denote the set of
constraints in S. We say that the dependencies of r ∈ Q are covered at unit u ∈ U , if for every rule s ∈ Q
such that r →m,n s and s /∈ u, it holds that (u, u′) ∈ E for all u′ ∈ U |s, i.e., u has an edge to all units
containing s.

To prove thatB = u< is a generalized bottom of P = u≤ wrt. the rule splitting setR = u<\constr(u<)
as by Definition 12, we prove that (a) R ⊆ B ⊆ P , (b) B \R contains only constraints, (c) no constraint in
B \R has nonmonotonic dependencies to rules in P \B, and (d) R is a rule splitting set of P .

Statement (a) corresponds to u< \ constr(u<) ⊆ u< ⊆ u≤ and u≤ is defined as u≤ = u<∪u, therefore
the relations all hold. For (b), B \R = u< \(u< \constr(u<)), and asA\(A\B) = A∩B, it is easy to see
thatB\R = u<∩constr(u<) and thusB\R only contains constraints. For (c), we show a stronger property,
namely that no rule (constraint or non-constraint) in B has nonmonotonic dependencies to rules in P \ B.
B = u< is the union of evaluation units V = {v ∈ U | v < u}. By Definition 14 (c) all nonmonotonic
dependencies r →n s are covered at every unit w such that w ∈ Ur. Hence if r ∈ w and w ∈ V , then either
s ∈ w or s ∈ w< holds, and hence s ∈ w≤ ⊆ u<. As P \ B = u≤ \ u<, no nonmonotonic dependencies
from B = u< to P \ B exist and (c) holds. For (d) we know that R = u< \ constr(u<) contains no
constraints, and by Proposition 1 all dependencies of non-constraints in R are covered by E . Therefore
r ∈ R, r →m,n s, and s ∈ P implies that s ∈ R. Consequently, (d) holds which proves the theorem. 2

INFSYS RR 15-01 41

Proof of Theorem 4. Similar to the proof of Theorem 3, we show this in four steps; given P = u<,
R = u′≤ \ constr(u′≤), and B = u′≤ = u′ ∪ u′<, we show that (a) R ⊆ B ⊆ P , (b) B \ R contains
only constraints, (c) no constraint in B \ R has nonmonotonic dependencies to rules in P \ B, and (d) R
is a rule splitting set of P . Let predsE(u) = {u1, . . . , uk} and Let V = {v ∈ U | v < u′} be the set of
units on which u′ transitively depends. (Note that V ⊂ predsE(u) and u /∈ V .) As u′< contains all units u′

transitively depends on, we have B = u′ ∪
⋃

w∈V w.
For (a), R ⊆ B holds trivially, and B ⊆ P holds by definition of u< and u′≤ and because u′ ∈

predsE(u). Statement (b) holds, because B \ R removes R from B, i.e., it removes everything that is
not a constraint in B from B, therefore only constraints remain. For (c) we show that no rule in B has
a nonmonotonic dependency to rules in P \ B. By Definition 14 (c), all nonmonotonic dependencies are
covered at all units. Therefore a rule r ∈ w, w ∈ {u′}∪V with r →n s, s ∈ U implies that either s ∈ w, or
that s is contained in a predecessor unit of w and therefore in u′ or in V . Hence there are no nonmonotonic
dependencies from rules in B to any rules not in B, and hence also not to rules in P \B and (c) holds. For
(d) we know that R contains no constraints and by Proposition 1 all dependencies of non-constraints in R
are covered by E . Therefore r ∈ R, r →m,n s, s ∈ P implies that s ∈ R and the theorem holds. 2

Proof of Proposition 4. (⇒) The added vertex m′ is assigned to one unit and gets assigned a type.
Furthermore, the graph stays acyclic as only outgoing edges fromm′ are added. I-connectedness is satisfied,
as it is satisfied in I and we add no o-interpretation. O-connectedness is satisfied, as m′ gets appropriate
edges to o-interpretations at its predecessor units, and for other i-interpretations it is already satisfied in I.

For FAI intersection, observe that if we add an edge (m′,mi) to I and it holds that mi ∈ o-intsI(ui),
thenm′ reaches in I only one o-interpretation at ui, and due to O-connectedness that o-interpretation is con-
nected to exactly one i-interpretation at ui, which is part of the original graph I and therefore satisfies FAI
intersection. Therefore it remains to show that the union of subgraphs of I reachable in I from m1,. . . ,mk,
contains one o-interpretation at each unit in the subgraph of E reachable from u1,. . . ,uk. We make a case
distinction.

Case (I): two o-interpretations mi ∈ o-intsI(ui), mj ∈ o-intsI(uj) in the join, with 1 ≤ i < j ≤ k,
have no common unit that is reachable in E from ui and from uj : then the condition is trivially satisfied, as
the subgraphs of I reachable in I from mi and mj , respectively, do not intersect at any unit.

Case (II): two o-interpretations mi ∈ o-intsI(ui), mj ∈ o-intsI(uj) in the join, with 1 ≤ i < j ≤ k,
have at least one common unit that is reachable from ui and from uj in E . Let uf be a unit reachable in E
from both ui and uj on two paths that do not intersect before reaching uf . From ui to uf , and from uj to uf ,
exactly one o-interpretation is reachable in I from mi and mj , respectively, as these paths do not intersect.
uf is a FAI of u, and as the join is defined, we reach in E exactly one o-interpretation at unit uf from mi

and mj . Due to O-connectedness, we also reach in I exactly one i-interpretation m′′ at uf from mi and
mj . Now m′′ is common to subgraphs of I that are reachable in I from mi and mj , and m′′ satisfies FAI
intersection in I.

Consequently, FAI intersection is satisfied in I ′ for all pairs of predecessors of m′ and therefore in all
cases. As no vertex m with {(m,m1), . . . , (m,mk)} ⊆ F exists and and as I satisfies Uniqueness, also I ′
satisfies Uniqueness.

(⇐) Assume towards a contradiction that I ′ is an i-graph but that the join is not defined. Then there
exists some FAI u′ ∈ fai(u) such that either no or more than one o-interpretation from o-intsI(u) is
reachable in I from some mi, 1 ≤ i ≤ k. As I is an i-graph, due to I-connectedness and O-connectedness,
if a unit u′ is a FAI and therefore u′ is reachable in E from ui, then at least one i-interpretation and one
o-interpretation at u′ is reachable in I from mi. If more than one o-interpretation is reachable in I from

42 INFSYS RR 15-01

some mi, 1 ≤ i ≤ k, this means that more than one o-interpretation at u′ is reachable in I ′ from the newly
added i-interpretation m. However, this violates FAI intersection in I ′, which is a contradiction. Hence the
result follows. 2

Proof of Proposition 5. (⇒) Whenever the join is defined, A′ is an i-graph by Proposition 4. It remains to
show that int(m′)+ ∈ AS(u<), and that A′ fulfills items (a) and (c) of an answer set graph. By Theorem 4
we know that for each ui, u

≤
i is a generalized bottom of u< wrt. the setRi = {r ∈ u≤i | B(r) 6= ∅}. For each

ui, therefore Y ∈ AS(u<) iff Y ∈ AS(u< \Ri ∪ facts(X)) for some X ∈ AS(u≤i). As A is an answer set
graph, for eachmi we know that int(mi)

+ ∈ AS(u≤i); hence Y ∈ AS(u<) if Y ∈ AS(u<\Ri∪int(mi)
+).

Now from the evaluation graph properties we know that u< = u≤1 ∪ · · · ∪ u
≤
k , and from the construction

of int(m′) and its dependencies in A′ we obtain that int(m′)+ = int(m1)
+ ∪ · · · ∪ int(mk)+. It follows

that int(m′)+ ∈ AS(u<), which satisfies condition (a). Due to the definition of join, condition (c) is also
satisfied and A′ is indeed an answer set graph.

(⇐) As A′ is an answer set graph, it is an i-graph, and hence by Proposition 4 m = m1 ./ · · · ./ mk is
defined. 2

Proof of Theorem 5. We prove this theorem using Proposition 6. We construct E ′′ = (U ′′, E′′) with
U ′′ = U ∪ {ufinal}, ufinal = ∅, and E′′ = E ∪ {(ufinal , u) | u ∈ U}. As ufinal contains no rules and
as E ′′ is acyclic, no evaluation graph property of gets violated and E ′′ is also an evaluation graph. As A
contains no interpretations at ufinal and dependencies from units in U are the same in E and E ′′, A is in fact
an answer set graph for E ′′. We now modify A to obtain A′′ as follows. We add the set Mnew = {m |
m = m1 ./ · · · ./ mn is defined at ufinal (wrt. A)} as i-interpretations of ufinal and dependencies from
each m ∈ Mnew to the respective o-interpretations mi, 1 ≤ i ≤ n. By Proposition 5, A′′ is an answer set
graph for E ′′, and moreover A′′ gets input-complete for ufinal by construction. As A′′ is input-complete for
U ∪ {ufinal} and output-complete for U , by Proposition 6 we have that AS(P) = i -intsA(ufinal) = Mnew .
As for every joinm = m1 ./ · · · ./ mn, we have int(m) = int(m1)∪ · · · ∪int(mn), to complete the proof
of the theorem, it remains to show that the join m between m1,. . . ,mn is defined at ufinal iff the subgraph
A′ of A reachable from the o-interpretations mi in F fulfills |o-intsA(ui)| = 1, for each ui ∈ U . As the
join involves all units in U , and since A′′ is an answer set graph and thus an i-graph, it follows from the
conditions for an i-graph that at each ui ∈ U exactly one o-interpretation is reachable from m, and thus also
from each mi; thus the condition for A′ holds. Conversely, if the subgraph A′ fulfills |o-intsA(ui)| = 1 for
each ui ∈ U , then clearly the FAI condition for the join m being defined is fulfilled. 2

Proof of Proposition 6. As ufinal depends on all units in U \{ufinal}, due to O-connectedness every i-inter-
pretationm ∈ i -intsA(ufinal) depends on one o-interpretation at every unit inU\{ufinal}. LetU\{ufinal} =
{u1, . . . , uk} and let MM = {m1, . . . ,mk} be the set of o-interpretations such that (m,mi) ∈ F and
mi ∈ o-intsA(ui), 1 ≤ i ≤ k. Then, due to FAI intersection, Mm contains each o-interpretation that
is reachable from m in A, and Mm contains only interpretations with this property. Hence int(m)+ =
int(m1) ∪ · · · ∪ int(mk), and due to condition (c) in Definition 19, we have int(m) = int(m)+. By
the dependencies of ufinal , we have u<final = P , and as ufinal is input-complete, we have that AS(P) =

AS(u<final) = {int(m)+ | m ∈ i -intsA(ufinal)}. As int(m) = int(m)+ for every i-interpretation m at
ufinal , we obtain the result. 2

Proof of Proposition 7. The proposition follows from Property 1, which asserts that the grounding P ′ has
the same answer sets as P , and from the soundness and completeness of the evaluation algorithm for ground
HEX-programs as asserted by Property 2. 2

INFSYS RR 15-01 43

Proof of Theorem 6. We show by induction on its construction that I = (M,F, unit , type, int) is an
answer set graph for E , and that at the beginning of the while-loop I is input- and output-complete for
V \ U .

(Base) Initially, I is initially and V = U , hence the base case trivially holds.
(Step) Suppose that I is an answer set graph for E at the beginning of the while-loop, and that it is

input- and output-complete for V \ U . As the chosen u only depends on units in V \ U , it depends only
on output-complete units. For a leaf unit u, (b) creates an empty i-interpretation and therefore makes u
input-complete. For a non-leaf unit u, the first for-loop (c) builds all possible joins of interpretations at
predecessors of u and adds them as i-interpretations to I. As all predecessors of u are output-complete by
the hypothesis, this makes u input-complete. Now suppose that Condition (d) is false, i.e., u 6= ufinal . Then
the second for-loop (e) evaluates u wrt. every i-interpretation at u and adds the result to u as an o-inter-
pretation. Due to Proposition 7, EVALUATELDESAFE(u, int(m′)) returns all interpretations o such that
o ∈ {X \ int(m′) | X ∈ AS(u ∪ facts(int(m′))}. As u depends on all units on which its rules depend,
and as i-interpretations contain all atoms from o-interpretations of predecessor units (due to condition (c)
of Definition 19), we have EVALUATELDESAFE(u, int(m′)) = EVALUATELDESAFE(u, int(m′)+). By
Theorem 3, u< is a generalized bottom of u≤, and by the induction hypothesis int(m′)+ ∈ AS(u<); hence
by Theorem 2, we have that int(m′)+ ∪ o ∈ AS(u≤). Consequently, adding a new o-interpretation m with
interpretation int(m) = o and dependency to m′ to the graph I results in int(m)+ ∈ AS(u≤), and adding
all of them makes I output-complete for u. Finally, in (f) u is removed from U ; hence at the end of the
while-loop I is an answer set graph and again input- and output-complete for V \ U .

It remains to consider the case where Condition (d) is true. Then ufinal was made input-complete, which
means that all predecessors of ufinal are output-complete. As ufinal depends on all other units, we have
U = {ufinal} and the algorithm returns i -intsA(u); by Proposition 6, it thus returns AS(P), which will
happen in the |V |-th iteration of the while loop. 2

B Example Run of Algorithm 2

We provide here an example run of Algorithm 2 for our running example.

Example 30 (ctd.) Consider an evaluation graph E ′2 which is E2 plus ufinal = ∅, which depends on all
other units. Following Algorithm 2 we first choose u = u1, and as u1 has no predecessor units, step (b)
creates the i-interpretation m1 with int(m1) = ∅. As u1 6= ufinal , we continue and in loop (e) obtain
O = AS(u1) =

{
{swim(in)}, {swim(out)}

}
. We add both answer sets as o-interpretations m2 and m3

and then finish the outer loop with U = {u2, u3, u4, ufinal}. In the next iteration, we could choose u = u2
or u = u3; assume we choose u2. Then predsE(u2) = {u1} and k = 1, and we enter the loop (c) and build
all joins that are possible with o-interpretations at u1 (all joins are trivial and all are possible), i.e., we copy
the interpretations and store them at u2 as new i-interpretations m4 and m5. In the loop (e), we obtain
O = EVALUATELDESAFE(u2, {swim(in)}) = ∅, as indoor swimming requires money which is excluded
by c8 ∈ u2. Therefore i-interpretation {swim(in)} yields no o-interpretation, indicated by �. However,
we obtain O = EVALUATELDESAFE(u2, {swim(out)}) = {∅}: as outdoor swimming neither requires
money nor anything else, i-interpretation {swim(out)} derives no additional atoms and yields the empty
answer set, which we store as o-interpretation m6 at u2; the iteration ends with U = {u3, u4, ufinal}. In
the next iteration we choose u = u3, we add in loop (c) i-interpretations m7 and m8 to u3, and in loop (e)
o-interpretations m9, . . . , m12 to u3; the iteration ends with U = {u4, ufinal}. In the next iteration we
choose u = u4; this time we have multiple predecessors, and in loop (c) we check join candidates m6 ./ m9

44 INFSYS RR 15-01

Algorithm 3: ANSWERSETSONDEMAND
Input: evaluation graph E for program P , with final unit ufinal = ∅
Output: the answer sets of P

initialize global storage S
repeat

mout := GETNEXTOUTPUTMODEL (ufinal)
if mout 6= UNDEF then output mout

until mout = UNDEF

and m6 ./ m10, which are both not defined. The other join candidates are m6 ./ m11 and m6 ./ m12,
which are both defined; we thus add their results as i-interpretations m13 and m14, respectively, to u4. The
loop (e) computes then one o-interpretation m15 for i-interpretation m13 and no o-interpretation for m14.
The iteration ends with U = {ufinal}. In the next iteration, we have predsE(ufinal) = {u1, u2, u3, u4}
and the loop (c) checks all combinations of one o-interpretation at each unit in predsE(ufinal). Only one
such join candidate is defined, namely m = m3 ./ m6 ./ m11 ./ m15, whose result is stored as a new i-
interpretation at ufinal . The check (d) now succeeds, and we return all i-interpretations at ufinal ; i.e., we
return {m} =

{
{swim(out), goto(altD),ngoto(gansD), go,need(loc, yogamat)}

}
. This is indeed the set

of answer sets of Pswim . 2

C On Demand Model Streaming Algorithm

Algorithm 2 fully evaluates all other units before computing results at the final evaluation unit ufinal , and
it keeps the intermediate results in memory. If we are only interested in one or a few answer sets, many
unused results may be calculated.

Using the same evaluation graph, we can compute the answer sets with a different, more involved algo-
rithm ANSWERSETSONDEMAND (shown in Algorithm 3) that operates demand-driven from units, starting
with ufinal , rather than data-driven from completed units. It uses in turn several building blocks that are
shown in Algorithms 4–6

ANSWERSETSONDEMAND calls Algorithm GETNEXTOUTPUTMODEL for ufinal and outputs its out-
put models, i.e., the answer sets of the input program P given by the evaluation graph E , one by one until
it gets back UNDEF. Like Algorithm 2, GETNEXTOUTPUTMODEL builds in combination with the other
algorithms an answer set graph A for E that is input-complete at all units, if all statements marked with
’(+)’ are included; omitting them, it buildsA virtually and has at any time at most one input and one output
model of each unit in memory.

Roughly speaking, the models at units are determined in the same order in which a right-to-left depth-
first-traversal of the evaluation graph E would backtrack from edges. This is because first all models of
the subgraph reachable from a unit u are determined, then models at the unit u, and then the algorithm
backtracks. The models of the subgraph are retrieved with GETNEXTINPUTMODEL one by one, and using
NextAnswerSet the output models are generated and returned. The latter function is assumed to return,
given a HEX-program P and the i-th element in an arbitrary but fixed enumeration I1, I2, . . . , Im of the
answer sets of P (without duplicates), the next answer set Ii+1, where by convention I0 = UNDEF and the
return value for Im is UNDEF. This is easy to provide on top of current solvers, and the incremental usage
of NextAnswerSet allows for an efficient stateful realization (e.g. answer set computation is suspended).

The trickiest part of this approach is GETNEXTINPUTMODEL, which has to create locally and in an
incremental fashion all joins that are globally defined, i.e., all combinations of incrementally available output
models of predecessors which share a common predecessor model at all FAIs. To generate all combinations

INFSYS RR 15-01 45

Algorithm 4: GETNEXTOUTPUTMODEL(u)
Input: u: unit
Output: mout : next omodel at u or UNDEF

if refsO(u) > 0 then return UNDEF
if cur I(u) = UNDEF then cur I(u) := GETNEXTINPUTMODEL(u)
while cur I(u) 6= UNDEF do

cur O(u) := NextAnswerSet(u∪ facts(cur I(u)), cur O(u))
if cur O(u) 6= UNDEF then

(+) add omodel cur O(u) toA with dependency to cur I(u)
return cur O(u)

cur I(u) := GETNEXTINPUTMODEL(u)

return UNDEF

Algorithm 5: ENSUREMODELINCREMENT(u, at)
Input: u: unit with {u1, . . . , uk} = predsE (u), at: index 1 ≤ at ≤ k
Output: at′ : index at ≤ at′ ≤ k or UNDEF

repeat
refsO(uat) := refsO(uat)− 1
m := GETNEXTOUTPUTMODEL(uat)
if m = UNDEF then at := at + 1
else

refsO(uat) := refsO(uat) + 1
return at

until at = k + 1
return UNDEF

of output models in the right order, it uses the algorithm ENSUREMODELINCREMENT.
The algorithms operate on a global data structure S = (E ,A, cur I, curO, refsO) called storage, where
• E = (U,E) is the evaluation graph containing ufinal ∈ U ,
• A = (M,F, unit , type, int) is the (virtually built) answer set graph,
• cur I : U →M ∪ {UNDEF} and curO : U →M ∪ {UNDEF}, are functions that informally associate

with a unit u the current input respectively output model considered, and
• refsO : U → N ∪ {0} is a function that keeps track of how many current input models point to the

current output model of u; this is used to ensure correct joins, by checking in GETNEXTOUTPUT-
MODEL that the condition (IG-F) for sharing models in the interpretation graph is not violated (for
details see Section 5.1.2 and Definition 17).

Initially, the storage S is empty, i.e., it contains the input evaluation graph E , an empty answer set graph
A, and the functions are set to cur I(u) = UNDEF, curO(u) = UNDEF, and refsO(u) = 0 for all u ∈ U . The
call of GETNEXTOUTPUTMODEL for ufinal triggers the right-to-left depth-first traversal of the evaluation
graph.

We omit tracing Algorithm ANSWERSETSONDEMAND on our running example, as this would take
quite some space; however, one can check that given the evaluation graph E2, it correctly outputs the single
answer set

I = {swim(out), goto(altD),ngoto(gansD), go,need(loc, yogamat)}.

Formally, it can be shown that given an evaluation graph E = (U,E) of a program P such that E contains
a final unit ufinal = ∅, Algorithm ANSWERSETSONDEMAND outputs one by one all answer sets of P ,
without duplicates, and that in the version without (+)-lines, it stores at most one input and one output
model per unit (hence the size of the used storage is linear in the size of the ground program grnd(P)).

46 INFSYS RR 15-01

Algorithm 6: GETNEXTINPUTMODEL(u)
Input: u: unit
Output: mout : imodel at u or UNDEF

(a) if predsE (u) = ∅ then
if cur I(u) = UNDEF then

(+) add imodel ∅ at u toA
return ∅

else return UNDEF

let {u1, . . . , uk} = predsE (u) /* assume this order is fixed for each unit u */
if cur I(u) 6= UNDEF then

at := ENSUREMODELINCREMENT(u, 1)
if at = UNDEF then return UNDEF
at := at− 1

else at := k
(b) while at 6= 0 do

if cur O(uat) 6= UNDEF then
refsO(uat) := refsO(uat) + 1
at := at− 1

else
m := GETNEXTOUTPUTMODEL(uat)
if m = UNDEF then

if at= k then return UNDEF
at := ENSUREMODELINCREMENT(u, at + 1)
if at = UNDEF then return UNDEF

else
refsO(uat) := refsO(uat) + 1
at := at− 1

let m = cur O(u1) ./ · · · ./ cur O(uk)
(+) add imodel m toA with dependencies to cur O(u1), . . . , cur O(uk)

return m

D Overview of Liberal Domain-Expansion Safety

Strong domain-expansion safety is overly restrictive, as it also excludes programs that clearly are finitely
restrictable. In this section we give an overview about the notion and refer to (15) for details.

Example 31 Consider the following program:

P=

{
r1 : p(a). r3 : s(Y) ← p(X),&concat [X, a](Y).

r2 : q(aa). r4 : p(X)← s(X), q(X).

}

It is not strongly safe because Y in the cyclic external atom &concat [X, a](Y) in r3 does not occur in an
ordinary body atom that does not depend on &concat [X, a](Y). However, P is finitely restrictable as the
cycle is “broken” by dom(X) in r4. 2

To overcome unnecessary restrictions of strong safety in (20), liberal domain-expansion safety (lde-safety)
has been introduced (15), which incorporates both syntactic and semantic properties of a program. The
details of the notion are not necessary for this paper, except that all lde-safe programs have finite groundings
with the same answer sets; we give here a brief overview.

Unlike strong safety, liberal de-safety is not a property of entire atoms but of attributes, i.e., pairs of
predicates and argument positions. Intuitively, an attribute is lde-safe, if the number of different terms in
an answer-set preserving grounding (i.e. a grounding which has the same answer sets if restricted to the
positive atoms as the original program) is finite. A program is lde-safe, if all its attributes are lde-safe.

The notion of lde-safety is designed in an extensible fashion, i.e., such that several safety criteria can be
easily integrated. For this we parametrize our definition of lde-safety by a term bounding function (TBF),
which identifies variables in a rule that are ensured to have only finitely many instantiations in the answer
set preserving grounding. Finiteness of the overall grounding follows then from the properties of TBFs.

INFSYS RR 15-01 47

For an ordinary predicate p∈P , let p�i be the i-th attribute of p for all 1 ≤ i ≤ ar(p). For an
external predicate &g ∈ X with input list X in rule r, let &g [X]r�T i with T ∈ {I, O} be the i-th input
resp. output attribute of &g [X] in r for all 1 ≤ i ≤ arT (&g). For a ground program P , the range of an
attribute is, intuitively, the set of ground terms which occur in the position of the attribute. Formally, for an
attribute p�i we have range(p�i, P) = {ti | p(t1, . . . , tar(p)) ∈ A(P)}; for an attribute &g [X]r�T i we have
range(&g [X]r�T i, P) = {xTi | &g [xI](xO) ∈ EA(P)}, where xs = xs1, . . . , x

s
ars(&g).

We use the following monotone operator to compute by fixpoint iteration a finite subset of grnd(P) for
a program P :

GP (P ′) =
⋃
r∈P
{rθ | ∃I ⊆ A(P ′), I 6|= ⊥, I |= B+(rθ)},

where A(P ′) = {Ta,Fa | a ∈ A(P ′)} \ {Fa | a ← . ∈ P} and rθ is the ground instance of r under
variable substitution θ : V → C. Note that in this definition, I might be partial, but by convention we assume
that all atoms which are not explicitly assigned to true are false. That is, GP takes a ground program P ′

as input and returns all rules from grnd(P) whose positive body is satisfied under some assignment over
the atoms of Π′. Intuitively, the operator iteratively extends the grounding by new rules if they are possibly
relevant for the evaluation, where relevance is in terms of satisfaction of the positive rule body under some
assignment constructable over the atoms which are possibly derivable so far. Obviously, the least fixpoint
G∞P (∅) of this operator is a subset of grnd(P); we will show that it is finite if P is lde-safe according to
our new notion. Moreover, we will show that this grounding preserves all answer sets as all omitted rule
instances have unsatisfied bodies anyway.

Example 32 Consider the following program P :

r1 : s(a). r2 : dom(ax). r3 : dom(axx).
r4 : s(Y)← s(X),&concat [X,x](Y), dom(Y).

The least fixpoint of GP is the following ground program:

r′1 : s(a). r′2 : dom(ax). r′3 : dom(axx).
r′4 : s(ax)← s(a),&concat [a, x](ax), dom(ax).
r′5 : s(axx)← s(ax),&concat [ax, x](axx), dom(axx).

Rule r′4 is added in the first iteration and rule r′5 in the second.

Towards a definition of lde-safety, we say that a term in a rule is bounded, if the number of substitutions
in G∞P (∅) for this term is finite. This is abstractly formalized using term bounding functions.

Definition 21 (Term Bounding Function (TBF)) A term bounding function, denoted b(P, r, S,B), maps
a program P , a rule r ∈ P , a set S of (already safe) attributes, and a set B of (already bounded) terms in r
to an enlarged set of (bounded) terms b(P, r, S,B) ⊇ B, such that every t ∈ b(P, r, S,B) has finitely many
substitutions inG∞P (∅) if (i) the attributes S have a finite range inG∞P (∅) and (ii) each term in terms(r)∩B
has finitely many substitutions in G∞P (∅).

Intuitively, a TBF receives a set of already bounded terms and a set of attributes that are already known
to be lde-safe. Taking the program into account, the TBF then identifies and returns further terms which are
also bounded.

48 INFSYS RR 15-01

The concept yields lde-safety of attributes and programs from the boundedness of variables according to
a TBF. We provide a mutually inductive definition that takes the empty set of lde-safe attributes S0(P) as its
basis. Then, each iteration step n ≥ 1 defines first the set of bounded terms Bn(r, P, b) for all rules r, and
then an enlarged set of lde-safe attributes Sn(P). The set of lde-safe attributes in step n + 1 thus depends
on the TBF, which in turn depends on the domain-expansion safe attributes from step n.

Definition 22 (Liberal Domain-Expansion Safety) Let b be a term bounding function. The setBn(r, P, b)
of bounded terms in a rule r ∈ P in step n ≥ 1 isBn(r, P, b) =

⋃
j≥0Bn,j(r, P, b) whereBn,0(r, P, b) = ∅

and for all j ≥ 0, Bn,j+1(r, P, b) = b(P, r, Sn−1(P), Bn,j).

The set of domain-expansion safe attributes S∞(P) =
⋃

i≥0 Si(P) of a program P is iteratively con-
structed with S0(P) = ∅ and for n ≥ 0:

• p�i∈Sn+1(P) if for each r∈P and atom p(t1, . . . , tar(p)) ∈ H(r), we have that term
ti ∈ Bn+1(r, P, b), i.e., ti is bounded;

• &g [X]r�Ii∈Sn+1(P) if each Xi is a bounded variable, or Xi is a predicate input parameter p and
p�1, . . . , p�ar(p) ∈ Sn(P);

• &g [X]r�Oi∈Sn+1(P) if and only if r contains an external atom &g [X](Y) such that Yi is bounded,
or &g [X]r�I1, . . . ,&g [X]r�Iar I(&g) ∈ Sn(P).

A program P is liberally domain-expansion (lde) safe, if it is safe and all its attributes are domain-
expansion safe.

A detailed description of liberal safety is beyond the scope of this paper. However, it is crucial that
each liberally domain-expansion safe HEX-program P is finitely restrictable, i.e., there is a finite subset Pg

of grndC(P) s.t. AS(Pg) = AS(grndC(P)). A concrete grounding algorithm GROUNDHEX is given
in (15); we use GROUNDHEX(P) in this article to refer to a finite grounding of P that has the same answer
sets.

References

[1] Eyal Amir and Sheila A. McIlraith. Partition-based logical reasoning for first-order and propositional
theories. Artificial Intelligence, 162(1-2):49–88, 2005.

[2] Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. The
DMCS solver for distributed nonmonotonic multi-context systems. In European Conference on Logics
in Artificial Intelligence (JELIA), pages 352–355. Springer, 2010.

[3] Selen Basol, Ozan Erdem, Michael Fink, and Giovambattista Ianni. HEX programs with action atoms.
In Technical Communications of the International Conference on Logic Programming (ICLP), pages
24–33, 2010.

[4] Markus Bögl, Thomas Eiter, Michael Fink, and Peter Schüller. The MCS-IE system for explaining
inconsistency in multi-context systems. In European Conference on Logics in Artificial Intelligence
(JELIA), pages 356–359, 2010.

INFSYS RR 15-01 49

[5] Gerd Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-context systems. In
AAAI Conference on Artificial Intelligence, pages 385–390. AAAI Press, 2007.

[6] Francesco Calimeri, Susanna Cozza, and Giovambattista Ianni. External sources of knowledge and
value invention in logic programming. Annals of Mathematics and Artificial Intelligence, 50(3–4):333–
361, 2007.

[7] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. Computable functions
in ASP: Theory and implementation. In ICLP, LNCS, pages 407–424. Springer, 2008.

[8] Francesco Calimeri, Michael Fink, Stefano Germano, Giovambattista Ianni, Christoph Redl, and An-
ton Wimmer. AngryHEX: an artificial player for angry birds based on declarative knowledge bases. In
National Workshop and Prize on Popularize Artificial Intelligence, pages 29–35, 2013.

[9] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

[10] Minh Dao-Tran, Thomas Eiter, and Thomas Krennwallner. Realizing default logic over description
logic knowledge bases. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
pages 602–613. Springer, 2009.

[11] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357, 1995.

[12] Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwallner, and Peter Schüller. Pushing
efficient evaluation of HEX programs by modular decomposition. In International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 93–106, 2011.

[13] Thomas Eiter, Michael Fink, and Thomas Krennwallner. Decomposition of Declarative Knowledge
Bases with External Functions. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 752–758. AAAI Press, 2009.

[14] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Conflict-driven ASP solving
with external sources. Theory and Practice of Logic Programming, 12(4-5):659–679, 2012.

[15] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Domain expansion for ASP-
programs with external sources. Technical Report INFSYS RR-1843-14-02, Institut für Information-
ssysteme, Technische Universität Wien, A-1040 Vienna, Austria, 2014.

[16] Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl, and Peter Schüller. Efficient
HEX-program evaluation based on unfounded sets. Journal of Artificial Intelligence Research, 49:269–
321, 2014.

[17] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM Transactions on
Database Systems, 22(3):364–418, 1997.

[18] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.
Combining answer set programming with description logics for the semantic web. Artificial Intelli-
gence, 172(12-13):1495–1539, 2008.

50 INFSYS RR 15-01

[19] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A Uniform Integration
of Higher-Order Reasoning and External Evaluations in Answer-Set Programming. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 90–96. Professional Book Center, 2005.

[20] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. Effective integration of
declarative rules with external evaluations for semantic-web reasoning. In European Semantic Web
Conference (ESWC), pages 273–287. Springer, 2006.

[21] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggregates in disjunctive logic programs:
Semantics and complexity. In European Conference on Logics in Artificial Intelligence (JELIA), pages
200–212. Springer, 2004.

[22] M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In International Conference
on Logic Programming (ICLP), pages 235–249. Springer, 2009.

[23] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo = ASP + control:
Preliminary report. CoRR, abs/1405.3694, 2014.

[24] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Solution enumeration for projected boolean
search problems. In Integration of AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems (CPAIOR), pages 71–86. Springer, 2009.

[25] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence, 187–188:52–89, 2012.

[26] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In R. Kowalski
and K. Bowen, editors, Logic Programming: Proceedings of the 5th International Conference and
Symposium, pages 1070–1080. MIT Press, 1988.

[27] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–386, 1991.

[28] Giray Havur, Guchan Ozbilgin, Esra Erdem, and Volkan Patoglu. Geometric Rearrangement of Multi-
ple Movable Objects on Cluttered Surfaces: A Hybrid Reasoning Approach. In International Confer-
ence on Robotics and Automation (ICRA), pages 445–452, 2014.

[29] Robert Hoehndorf, Frank Loebe, Janet Kelso, and Heinrich Herre. Representing default knowledge
in biomedical ontologies: Application to the integration of anatomy and phenotype ontologies. BMC
Bioinformatics, 8(1):377, 2007.

[30] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modularity Aspects of Disjunc-
tive Stable Models. Journal of Artificial Intelligence Research, 35:813–857, 2009.

[31] Matti Järvisalo, Emilia Oikarinen, Tomi Janhunen, and Ilkka Niemelä. A module-based framework for
multi-language constraint modeling. In Logic Programming and Nonmonotonic Reasoning (LPNMR),
pages 155–168, 2009.

[32] O. Lassila and R.R. Swick. Resource description framework (RDF) model and syntax specification,
1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

INFSYS RR 15-01 51

[33] Yuliya Lierler and Miroslaw Truszczynski. Modular answer set solving. In Late-Breaking Develop-
ments in the Field of Artificial Intelligence, Bellevue, Washington, USA, July 14-18, 2013, volume
WS-13-17 of AAAI Workshops. AAAI, 2013.

[34] V. Lifschitz and H. Turner. Splitting a Logic Program. In Proceedings ICLP-94, pages 23–38, Santa
Margherita Ligure, Italy, 1994. MIT-Press.

[35] Thomas Linke. Graph Theoretical Characterization and Computation of Answer Sets. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 641–645, 2001.

[36] Thomas Linke and Vladimir Sarsakov. Suitable graphs for answer set programming. In Franz Baader
and Andrei Voronkov, editors, LPAR, volume 3452 of Lecture Notes in Computer Science, pages 154–
168. Springer, 2004.

[37] Alessandro Mosca and Diego Bernini. Ontology-driven geographic information system and dlvhex
reasoning for material culture analysis. In Italian Workshop RiCeRcA at ICLP, 2008.

[38] Ilkka Niemelä. Logic programming with stable model semantics as constraint programming paradigm.
Annals of Mathematics and Artificial Intelligenc, 25(3–4):241–273, 1999.

[39] Emilia Oikarinen and Tomi Janhunen. Achieving compositionality of the stable model semantics for
smodels programs. TPLP, 8(5-6):717–761, 2008.

[40] Max Ostrowski and Torsten Schaub. ASP modulo CSP: the clingcon system. Theory and Practice of
Logic Programming (TPLP), 12(4-5):485–503, 2012.

[41] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. Gasp: Answer set
programming with lazy grounding. Fundamenta Informaticae, 96(3):297–322, 2009.

[42] Simona Perri, Francesco Ricca, and Marco Sirianni. A parallel ASP instantiator based on DLV. In
Declarative Aspects of Multicore Programming (DAMP’10), LNCS, pages 73–82. Springer, 2010.

[43] Axel Polleres. From SPARQL to rules (and back). In International Conference on World Wide Web
(WWW), pages 787–796. ACM, 2007.

[44] Teodor C. Przymusinski. Stable semantics for disjunctive programs. New Generation Computing,
9:401–424, 1991.

[45] Theodor C. Przymusinski. On the Declarative Semantics of Deductive Databases and Logic Programs.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 193–216.
Morgan Kaufman, 1988.

[46] Christoph Redl. Answer Set Programming with External Sources: Algorithms and Efficient Evaluation.
PhD thesis, Vienna University of Technology, 2014.

[47] K.A. Ross. Modular Stratification and Magic Sets for Datalog Programs with Negation. Journal of the
ACM, 41(6):1216–1267, 1994.

[48] Roman Schindlauer. Answer Set Programming for the Semantic Web. PhD thesis, Vienna University
of Technology, Vienna, Austria, 2006.

52 INFSYS RR 15-01

[49] Peter Schüller. Inconsistency in Multi-Context Systems: Analysis and Efficient Evaluation. PhD thesis,
Vienna University of Technology, Vienna, Austria, 2012.

[50] Peter Schüller, Volkan Patoglu, and Esra Erdem. A Systematic Analysis of Levels of Integration be-
tween Low-Level Reasoning and Task Planning. In Workshop on Combining Task and Motion Planning
at IEEE International Conference on Robotics and Automation (ICRA), 2013.

[51] Yi-Dong Shen, Kewen Wang, Thomas Eiter, Michael Fink, Christoph Redl, Thomas Krennwallner,
and Jun Deng. FLP answer set semantics without circular justifications for general logic programs.
Artificial Intelligence, 213:1–41, 2014.

[52] Shahab Tasharrofi and Eugenia Ternovska. A semantic account for modularity in multi-language mod-
elling of search problems. In International Symposium on Frontiers of Combining Systems (FroCoS),
pages 259–274, 2011.

[53] Yisong Wang, Jia-Huai You, Li-Yan Yuan, Yi-Dong Shen, and Mingyi Zhang. The loop formula based
semantics of description logic programs. Theor. Comput. Sci., 415:60–85, 2012.

[54] Jesia Zakraoui and Wolfgang L. Zagler. A method for generating CSS to improve web accessibility for
old users. In Int. Conf. on Computers Helping People with Special Needs (ICCHP), pages 329–336,
2012.

[55] Hande Zirtiloǧlu and Pinar Yolum. Ranking semantic information for e-government: complaints man-
agement. In International Workshop on Ontology-supported business intelligence (OBI). ACM, 2008.

