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Abstract. The increasing availability of streaming data has accelerated advances in information
processing tools that no longer store data for static querying but push information to consumers as
soon as it becomes available. Stream processing aims at providing languages and tools for data that
changes at a high rate. To cope with the volume of data, query languages often extend existing
approaches for static data by means of window operators that return snapshots of recent data. How-
ever, the semantics of these languages are often given only informally or operationally, which makes
their analysis and comparison difficult. A formal means to express the declarative semantics of such
systems seems to be missing. This lack of theory is of particular relevance for the emerging research
in stream reasoning which shifts the focus from throughput to higher expressiveness. To fill this
gap, we present LARS, a Logic-based framework for Analytic Reasoning over Streams. At its core,
LARS formulas extend propositional logic with generic window operators and additional controls
to handle temporal information. On top of this, LARS programs extend Answer Set Programming
(ASP) for rich stream reasoning capabilities; the latter can be exploited to target AI applications
in a streaming context, such as diagnosis, configuration or planning. Specifically, we study in this
article the computational complexity of LARS formulas and programs, their relationship to Linear
Temporal Logic (LTL) and the well-known Continuous Query Language (CQL). Furthermore, we
discuss the modelling capabilities of LARS in notes on the SPARQL extensions C-SPARQL and
CQELS, and on the interval-based approach of the complex event processing language ETALIS. We
finally briefly touch available implementations, in particular, the recent prototype engines Laser and
Ticker that aim for high throughput and high expressiveness, respectively. Notably, both engines
specify their semantics in LARS, indicating the desired flexibility of the framework and its potential
as stream reasoning language itself, which is further explored in other works.
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1 Introduction

During the last decade, stream reasoning (Della Valle et al., 2009; Mileo et al., 2017) emerged as re-
search topic from stream processing (Stephens, 1997; Babu & Widom, 2001) to address the semantic level
of querying continuously changing data. The increasing amount and availability of data from sensors, net-
works, mobile devices, etc., has contributed to a shift in information processing from pulling static data on
request to continuous pushing as soon as it is available. Many applications that deal with such potentially
infinite streams of data make use of window operators to select recent snapshots of the unbounded input.
Typical windows are obtained based on time or by counting tuples; they may progress instantly, or in larger
steps. Window mechanisms have shown to be a useful ingredient in stream processing and reasoning for
multiple reasons. First, some form of data limitation is often needed for pragmatic purposes, i.e., to cope
with the amount of information. Second, viewing streams as sequence of relations, i.e., databases, allows
for reusing available tools for processing static data. Third, many real-time use cases are inherently only
concerned about the recent past, as the next example illustrates.

Example 1. To monitor a city’s public transportation, the city traffic center has a static background data
set for the assignment of trams to lines of the form line(ID , L), where ID is the tram and L the line
identifier. The planned travelling time (duration D) between stops X and Y with line L is stored by
rows plan(L,X, Y,D). Facts of the form old(ID) classify old trams which are inconvenient for travel-
ling with baby strollers. Moreover, sensor data tram(ID , X) and jam(X) report the appearance of tram ID
and traffic jams at stop X , respectively. Based on this, reports on the traffic status and suggested updates
for travel routes shall be provided in real time. Consider Bob travelling with his baby on line `3 (Fig. 1a).
He is currently at Haydn Street (h) and wants to go to Strauß Avenue (s), so he has different options to
change trams at Mozart Circus (m). Thus, he wants to know (i) the expected arrival time of the next tram
that (ii) is convenient for the stroller. Fig. 1b depicts arrival times, e.g., tram(a1, b) at t = 36 represents that
tram a1 arrived at stop Beethoven Square at minute 36. Furthermore, consider the following background
data tables, which specify the planned travel time between stops (plan), the association between lines and
their trams (line), and which trams are old and thus ill-suited for strollers (old ).

plan = {(`1, b,m, 8), (`2, g,m, 7), (`3, h,m, 3), . . .}
line = {(a1, `1), (a2, `2), (a3, `3), . . .} old = {(a1), . . .}

Based on this input stream and the static background data, we expect the following reports:

(1) Tram a1 is expected to arrive atm at time 44, and a3 should arrive atm one minute earlier, i.e., at minute 43.
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(2) Switching from line `3 to `1 at m satisfies the short waiting time requirement. However, since tram a1 is
old, it is not a good connection with the stroller. �

Different research communities have contributed to aspects of reasoning over data streams, with different
focus (see also Dell’Aglio, Della Valle, van Harmelen, & Bernstein, 2017):
− In the area of Data Stream Management Systems (DSMS), the focus is typically on “low-level” stream
processing, i.e., queries on data that arrives at high input rate. Such queries center around cross-joins of
data, elementary pattern matching, etc. Performance and scalability are important criteria, which has led
to windows as a key means to deal with large data volumes, taking also physical implementation design
(buffers, etc.) into account.

Particularly influential work in this area has been the Stanford Data Stream Management System (STREAM)
(Arasu et al., 2003a) and its continuous query language (CQL) (Arasu et al., 2003b, 2006). It extends SQL
with window operators and essentially reduces the semantics of stream processing to SQL-based queries
over obtained snapshots.

− In Knowledge Representation and Reasoning (KR&R), the approaches aim at stream reasoning,1 where
implicit information is elicited from data in the input stream and a background knowledge base, represented
for instance in a Description Logic or as a logic program. The focus is naturally put on higher-level (ab-
stracted) information and lower-rate input streams. Often, stream reasoning is viewed as temporal reasoning
over a sequence of knowledge bases extended with data. Windows or snapshots have not yet played a promi-
nent role, or are limited to very restrictive forms, cf. (Do et al., 2011; Gebser et al., 2008; Zaniolo, 2012;
Ren & Pan, 2011; Özcep et al., 2015).

− In the Semantic Web area, the Linked Data movement has been striving to lift stream data to a semantic
level. To this end, linked stream data aims at coupling tuples with timestamps, in order to facilitate tem-
poral data processing. Similarly as CQL extends SQL, several proposals have been made to add window
mechanisms to SPARQL, the standard query language for RDF data. These works include, e.g., C-SPARQL
(Barbieri et al., 2010), CQELS (Phuoc et al., 2011), and SPARQLStream (Calbimonte et al., 2010). The
semantics of according queries is typically given only informally or on an operational basis, hiding poten-
tially significant differences in results behind similar syntax. In fact, comparisons of these languages have
been geared towards high data frequency and mere output volume of queries (i.e., number of tuples) than
concrete tuples (i.e., contents), not their semantics.

Motivation for a formal framework. The developments sketched above yield a landscape of different
approaches for stream reasoning. While they often share conceptual ideas, their exact commonalities and
differences remain unclear without a common theoretical underpinning, in which its declarative semantics
may be expressed, analyzed, and compared. The lack of theoretical underpinnings for stream reasoning has
been observed already in (Della Valle et al., 2009). In particular, the authors propose that a theoretical
framework for stream reasoning must combine two aspects: first, it has to serve as basis for explicit formal
semantics, and second, it must account for high-throughput, i.e., frequency and volume of data.

From a theoretical perspective, the trade-off between expressiveness and scalability is evident. In par-
ticular, some portions of the data might have a higher frequency and volume than others, and the potential

1There is no general consensus on how to discriminate stream reasoning from stream processing; opinions on this have diverged
by large at a Stream Reasoning Workshop in Vienna, Nov. 2015, even whether stream reasoning is more general than stream
processing or vice versa, or whether declarative (model-based) vs. operational (code-based) definition of semantics should play a
role.
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difficulty of reasoning does not imply that all operations are highly complex. A theoretical foundation for
stream reasoning should thus aim to cover the entire spectrum, i.e., provide means to express both semanti-
cally trivial real-time computations as well as complex reasoning tasks that are necessarily slower; possibly
within the same query or program. This can only be achieved by a modular system, where the mecha-
nisms to handle streams (like window operators for deliberate information loss) can be used in a generic and
compositional way.

Regarding the expressiveness, a rich framework should encompass advanced reasoning features as avail-
able in KR&R. In particular, this includes intensional data definitions, i.e., the ability to abstract from (exten-
sional) input data. Moreover, nonmonotonicity is of special relevance in stream reasoning, since conclusions
may have to be retracted due to later arrival of previously missing information (e.g., in case of defaults) or
contrary evidence (in case of contradictions). Next, model generation as in SAT solving and Answer Set
Programming (ASP) are useful when tackling domains which permit multiple solutions. Such features and
according techniques have been studied almost exclusively on static data, where in particular extensions of
Datalog (Ceri et al., 1990) play a prominent role. Zaniolo (2012) already noted a lack of logical foundation
for Data Stream Management Systems. We aim here at providing one for stream reasoning with generic
windows.

Contributions. Based on the above considerations, we have conceived LARS, a Logic-based Framework
for Analytic Reasoning over Streams. Our contributions can be briefly summarized as follows.

− Modeling streams and windows. As a basis for a declarative semantics, we provide a formal model of
streams and a generic notion of window function that can be applied to streams; our notion can be instan-
tiated to a plethora of window functions that are used in practice, including time-based windows (where
data is selected based on temporal constraints), tuple-based windows (selection on order constraints), and
partition-based windows (selection by a mix of order and semantic information), and filter windows (se-
mantics information). Notably, the result of applying a window to a stream yields a (sub)-stream, such that
window functions can be composed (i.e., nested). This allows one to express complex data snapshots, based
on a repertoire of selections that are available. In turn, composed data selections can be abstractly viewed
as a single selection by a respective window function.

− LARS language. The LARS framework provides two languages for reasoning over streams, referred to as
LARS formulas and LARS programs respectively. The former language is the monotone core of LARS, i.e., a
first-order formalism to reason over extensional data only. Inspired by the way how data in stream processing
is handled, the central entailment definition extends propositional logic by novel operators (i) to limit data
by generic window operators and (ii) to specify a temporal modality of formulas within obtained snapshots.
That is to say, LARS formulas express validity at some, all, or specific time points in a window. The
propositional core is then considered also in a schematic way to allow for variables that serve as placeholders
for domain values. In Example 1, the formula �+53exp(a3,m) could informally state that tram a3 is
expected to arrive at station m within the next five minutes; �+53exp(X,Y ) is a schematic version with
variables X and Y .

LARS programs are an (in essence second-order) language for more involved applications that require rea-
soning over auxiliary (i.e., intensional) predicates. Programs are sets of rules similar as in Datalog but built
upon LARS formulas instead of atoms as elementary expressions. In order to deal with incomplete informa-
tion and negation, programs are equipped with a multiple model semantics as in Answer Set Programming
(Gelfond & Lifschitz, 1991; Baral, 2003; Brewka, Eiter, & Truszczyński, 2011, 2016) to obtain preferable
properties such as nonmonotonicity, model minimality and supportedness of inferences (Section 3.3). In
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fact, LARS programs can be seen as an extension of Answer Set Programming for stream reasoning. In
Example 1, the rule poss(X ,m)← �+53exp(X,m),¬old(X). could informally state that when a tram X
is expected to arrive at station m (Mozart Circus) within the next five minutes and is not an old make, then
it is a possible target for further consideration.

− Computational complexity and expressiveness. We investigate the computational complexity of model
checking and satisfiability for both LARS formulas and programs, over an input data stream, assuming
that window evaluation is tractable. Our analysis pays particular attention to nesting of windows and the use
of different windows types that are common in practice. Our analysis reveals that both problems are PSpace-
complete for propositional (ground) LARS formulas and programs in general, but have lower complexity if
either the nesting depth of window operators is bounded by a constant, or only common window operators
as those mentioned above are used, under some mild constraint. In particular, reasoning in LARS is then not
harder than in ASP; notably, this includes the most practical programs which employ no window nesting.
For non-ground LARS formulas and programs (i.e., the Datalog case), the combined complexity of satis-
fiability testing increases (up to NExpTimeNP) in the considered setting, while for model checking it does
not drastically increase; for formulas, it remains unchanged. The data complexity is, as one might expect,
in line with the complexity of the (bounded) ground case. Regarding expressiveness, LARS formulas can
express only (and in general all) polynomial time recognizable languages. We show that in case of sliding
time-based windows, propositional LARS formulas can be translated into linear-time temporal logic (LTL),
and thus a fortiori can express only a strict fragment of the regular languages. While sliding time-based win-
dows are easily described in LTL, expressing others (e.g., sliding tuple-based windows) is more involved,
and even impossible for polynomial-time windows in general. Propositional LARS programs instead are
shown to capture the class of regular languages, i.e., every regular language and only regular languages can
be expressed by propositional LARS programs. As non-ground LARS program subsume disjunctive Data-
log and are not harder to evaluate, these programs capture the class of Σp

2 recognizable languages, and are
thus a rather expressive formalism.

− LARS use cases. The use of LARS as framework allows for formally defining and comparing existing
languages, in particular when they are defined only operationally or informally. By means of LARS one
also may equip existing formalisms with a declarative semantics. We explore the modelling capabilities
of LARS by drawing formal relations with different prominent languages: we capture the semantics of the
(core of the) continuous query language (CQL) that extends SQL for streams, and we discuss C-SPARQL
and CQELS that similarly extend SPARQL for RDF streams. Finally, we consider ETALIS (Anicic et al.,
2010), which is also rule-based, but different from LARS aims at complex event processing and builds on
time intervals rather than time points.

Furthermore, LARS can be used as a genuine language for stream reasoning itself. In particular, a fragment
called plain LARS has been utilized in multiple works mentioned in Section 6.1. It extends normal logic
programs essentially by so-called extended atoms for controlling the streaming aspects. Plain LARS pro-
grams have been used to model the decision unit in a simulation framework for Content-Centric Networking
Management (Beck et al., 2016, 2017).

In summary, we have established with LARS a novel formalism to express and analyze stream reasoning,
from both the theoretical and the practical perspective. Due to its linkage to ASP, it provides a uniform basis
for developing AI applications in a streaming context, such as diagnosis, configuration, planning and many
others, cf. (Erdem, Gelfond, & Leone, 2016). Further works complement the seminal results presented here
and address equivalence issues for optimization (Beck et al., 2016), incremental answer update to queries
(Beck et al., 2015), and prototype implementation (Beck et al., 2016, 2017; Bazoobandi et al., 2017).
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Organization. The remainder of this article is organized as follows. The next section introduces the basic
constituents of the model-theoretic semantics of our framework, viz. streams and window functions. Sec-
tion 3 then presents the LARS language, where syntax and semantics of both LARS formulas and programs
are defined. This is followed by a computational complexity analysis in Section 4. Section 5 investigates
the relationship of LARS to selected other formalisms, among them CQL, LTL, C-SPARQL, and CQELS.
while Section 6 provides a discussion of further work on LARS and puts LARS into the broader context
of stream processing and reasoning. In the final Section 7 we draw conclusions and outline directions for
future research. In order not to disrupt the flow of reading, proofs of technical results have been moved to
the Appendix.

2 Streams and Windows

In line with the setting of many practical systems for stream processing, we adopt a discrete, linear time
ontology and model windows as data snapshots that select data from a given input stream, based on different
principles. Notably, the result of applying a window function to a stream is another (sub)-stream; this allows
for nesting of windows and thus to express complex data selections. The generic notion of window is then
instantiated to widely used concrete window functions of different type.

2.1 Streaming data

We use mutually disjoint finite sets of predicates P , constants C, variables V and time variables U . The set
T of terms is given by C ∪ V and the set A of atoms is defined as {p(t1, . . . , tn) | p ∈ P, t1, . . . , tn ∈ T }.
The set G of ground atoms contains all atoms p(t1, . . . , tn) ∈ A such that {t1, . . . , tn} ⊆ C. We also say a
term is ground if it is a constant.

We divide P into two disjoint subsets, namely the extensional predicates PE and the intensional predi-
cates PI . Accordingly, we distinguish extensional atoms AE and intensional atoms AI . Intensional predi-
cates/atoms are used to express inferred information. On the other hand, extensional predicates (respectively
atoms) are further partitioned into PEB (resp. AEB) for background data and PES (resp. AES) for data streams.
The mentioned partitions are analogously defined for ground atoms GI , GEB and GES . With slight abuse of
notation, G usually refers to GI ∪ GES , i.e., ground atoms that are not reserved for background data.

Additionally, we assume basic arithmetic operations (+, −, ×, ÷) and comparisons (=, 6=, <, >, ≤, ≥)
are predefined by designated atoms B ⊆ AEB , and used also in infix notation.

We now present the central notion of streams, which we base on the linear time ontology 〈N,≤〉; infor-
mally the increase by 1 is the passing of time in terms of a tick by a global system clock.

Definition 1 (Stream). Let T be a closed nonempty interval in N and υ : N→ 2G an evaluation function
such that υ(t) = ∅ for all t ∈ N \ T . Then, the pair S = (T, υ) is called a stream, T is the timeline of S,
and the elements of T are time points.

We write evaluation functions also as set of nonempty mappings. For instance, {17 7→ {a, b}} assigns {a, b}
to time point 17, and ∅ else.

Consider two streams S = (T, υ) and S′ = (T ′, υ′). We say S′ is a substream or window of S, de-
noted S′ ⊆ S, if T ′ ⊆ T and υ′(t′) ⊆ υ(t′) for all t′ ∈ T ′. We call S′ a proper substream of S, de-
noted S′ ⊂ S, if S′ ⊆ S and S′ 6= S. Moreover, we define the size #S of S by Σt∈T max(|υ(t)|, 1).
The restriction S|T ′ of S to T ′ ⊆ T is the stream (T ′, υ|T ′), where υ|T ′ restricts the domain of υ to T ′,
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i.e., υ|T ′(t) = υ(t) for all t ∈ T ′, else υ|T ′(t) = ∅. A data stream contains only atoms with extensional
predicates.

Example 2 (cont’d). Consider again the scenario of Example 1. We can model the input as the data
streamD = (T, υ) with timeline T = [0, 50] and evaluation υ(36) = {tram(a1, b)}, υ(40) = {tram(a3, h)},
and υ(t) = ∅ for all t ∈ T \ {36, 40}. With the mapping notation, we simply write {36 7→ {tram(a1, b)},
40 7→ {tram(a3, h)}}. �

2.2 Window Functions

An essential aspect of stream reasoning is to restrict data to so-called windows, i.e., recent substreams to
limit the amount of data and forget outdated information.

Definition 2 (Window function). Any (computable) function w that returns, given a stream S = (T, υ), and
a time point t ∈ N, a window S′ of S, is called a window function.

The most common types of windows in practice include time-, tuple-, and partition-based windows. We
associate them with three window functions symbols τ , #, and p, respectively. Traditionally (Arasu et al.,
(2006)), these window functions take a fixed size ranging back in time from a reference time point t; we
generalize this by allowing to look back and forth from t. Moreover, we introduce a filter window function
f which only drops data but retains the current timeline.

Orthogonal to the selection mechanism of a window is the way it progresses. Figures 2-4 show three
typical ways a standard time-based window of size n = 3 progresses. First, Figure 2 depicts the sliding
window, where from the query time t (indicated by a bullet), always window [t− n, t] is selected. The right
end of the window does not necessarily have to equal the query time. If the window shifts in greater intervals
(than 1), we get a hopping window as shown in Figure 3. Here, the hop size is 2, i.e., the window shifts to
the right every 2 time points. If the hop size equals the window size, we get a tumbling window as shown
in Figure 4. Sliding windows can be seen as a means for a fully continuous evaluation of recent events.
Hopping windows additionally allow to specify a certain interval after which a re-evaluation is needed. This
is of interest when we want to control the time when a result shall be refreshed, e.g., a condition over the
last 60 seconds which shall be recomputed only every 15 seconds. Finally, the tumbling window is suitable
when we want to partition the timeline, e.g., evaluate something in fixed intervals of 60 seconds.

Note that depending on available parameters, these principles of how a window progresses extends to
other windows as well, in particular, for tuple-based windows. We will now introduce generalized versions
of the main windows.

2.3 Time-based Window

Definition 3 (Time-based window). Let S = (T, υ) be a stream, T = [tmin, tmax], t ∈ N, `, u ∈ N ∪ {∞}
and d ∈ N such that d ≤ ` + u. If t ∈ T , the time-based window function with range (`, u) and hop size d
of S at time t is defined by

τ `,u,d(S, t) = (T ′, υ|T ′) , (1)

where T ′=[t`, tu], t` = max{tmin, t′−`}with pivot point t′ = b tdc·d, and tu = min{t′+u, tmax}. If t 6∈ T ,
we define τ `,u,d(S, t) = S.
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Figure 2: Sliding time-based window of size 3, bullets indicate query times
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Figure 3: Hopping time-based window of size 3 and hop size 2, bullets indicate query times

The size of a time-based window function τ `,u,d is given by ` + u. Note that the case for t 6∈ T is given
only for formal reasons, i.e., compliance with Definition 2. Conceptually, the time-based window is only
applicable if t ∈ T . The general approach is useful for a compositional approach as discussed later.

The following example demonstrates the use of time-based windows.

Example 3 (cont’d). On the data stream D of Example 2, consider a monitoring use case where we want to
know only the tram appearances reported within the last 4 minutes, at every minute. To this end, we can use
a time-based window function τ4,0,1. Applying it on D at t = 42 gives τ4,0,1(D, 42) = ([38, 42], υ′), where
υ′ = {40 7→ {tram(a3, h)}}. �

A time-based window function τ `,u,d is called sliding, if d = 1, and tumbling, if d > 1 and d = `+ u, else
hopping. We abbreviate τ `,0,1 by τ ` and τ0,u,1 by τ+u.

Example 4. Figure 5 shows the initial progress of a hopping time-based window function τ3,1,3 that also
looks one time point into the future. Note that the pivot point stays the same for every three consecutive
time points due to the hop size d = 3. �
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Figure 5: Generalized time-based window τ3,1,3

2.4 Tuple-based Window

Definition 4 (Tuple-based window). Let S = (T, υ) be a stream, T = [tmin, tmax] and t, `, u ∈ N. We de-
fine the tuple time bounds t`, tu as

t` = max{tmin} ∪ {t′ | tmin ≤ t′ ≤ t ∧ #(S|[t′,t])≥`}, and
tu = min {tmax}∪ {t′ | t ≤ t′ ≤ tmax ∧ #(S|[t+1,t′])≥u}.

Let T` = [t`, t] and Tu = [t+ 1, tu]. If t ∈ T , the tuple-based window with range (`, u) of S at time t is
defined by

#`,u(S, t) = (T ′, υ′|T ′), where T ′ = [t`, tu], and

v′(t′) =


v(t′) for all t′ ∈ T ′ \ {t`, tu}
v(t′) if t′ = t` and #(S|T`) ≤ `
X` if t′ = t` and #(S|T`) > `
v(t′) if t′ = tu and #(S|Tu) ≤ u
Xu if t′ = tu and #(S|Tu) > u

where Xq ⊆ υ(tq), q ∈ {`, u}, such that #(Tq, υ
′|Tq) = q. If t 6∈T , we define #`,u(S, t) = S.

Note that the tuple-based window is unique only if for both q ∈ {`, u}, υ′(tq) = υ(tq), i.e., if all atoms at the
endpoints of the selected interval are retained. There are two natural possibilities to enforce the uniqueness
of a tuple-based window. First, if there is a total order over all atoms, one can give a deterministic definition
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Figure 6: Scenario of Figure 1 (b) extended

of the setsXq in Definition 4. Second, one may omit the requirement that exactly ` tuples of the past, resp. u
tuples of the future are contained in the window, but instead demand the substream obtained by the smallest
interval [t`, tu] containing at least ` past and u future tuples. Note that this approach would simplify the
definition to #`,u(S, t) = (T ′, υ|T ′), requiring only to determine T ′ = [t`, tu].

Example 5. To illustrate tuple-based window, we extend the input stream in Example 1 with facts of the
form bus(ID , X) to denote the appearance of buses at stops. Figure 6 depicts the new scenario. The data
stream is D = (T, υ) where T = [0, 50] and

υ =


36 7→ {tram(a1, b), bus(b1, b)},
40 7→ {tram(a2, h), bus(b1, s)},
43 7→ {tram(a2,m)},
44 7→ {tram(a1,m)},
45 7→ {bus(b2,m)}


To get the last four and the next vehicle appearances w.r.t. a reference time point t = 43, we can use the

tuple-based window function #4,1, which gives two possible substreams at t: S1 = (T1, υ1) and S2 = (T2, υ2),
where for both j ∈ {1, 2}, Tj = [36, 44],

υj(40) = {tram(a2, h), bus(b1, s)},
υj(43) = {tram(a2,m)},
υj(44) = {tram(a1,m)};

υ1(36) = {bus(b1, b)} and υ2(36) = {tram(a1, b)}. That is to say, the two windows differ in the evaluation
at time point 36, where a nondeterministic choice is made to pick exactly four elements from the input stream
from time point 43 back to 36. �

2.5 Partition-based Window

We recall that G denotes the set of ground atoms, which is the basis for defining the index function idx of the
partition-based window. Each index corresponds to a substream, on which a tuple-based window is applied.
We obtain from a substream S = (T, υ) a substream idxi(S) = (T, υi) by taking υi(t) = {a ∈ υ(t) |
idx(a) = i}.

Definition 5 (Partition-based window). Let S = (T, υ) be a stream, t ∈ N, and let I ⊂ N be a finite in-
dex set. Let idx : G → I and n : I → N× N be total functions, n(i) = (`i, ui). Moreover, for all i ∈ I ,
let Si = idxi(S) and #`i,ui(Si, t) = ([t`i , t

u
i ], υ′i) be the tuple-based window with range (`i, ui) of Si at

time t. If t ∈ T , the partition-based window of S at time t (relative to idx, n) is defined by

pidx,n(S, t) = (T ′, υ′), where T ′ = [min
i∈I

t`i ,max
i∈I

tui ]

and υ′(t′) =
⋃
i∈I υ

′
i(t
′) for all t′ ∈ T ′. If t 6∈T , we define pidx,n(S, t) = S.
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Note that, in contrast to schema-based streaming approaches, we assume multiple kinds of tuples (predi-
cates) in a single stream. Whereas other approaches may use tuple-based windows of different counts on
separate streams, we can have separate tuple-counts on the corresponding substreams of a partition-based
window on a single stream.

Example 6 (cont’d). Continue with the extended scenario in Example 5, to get the last appearance of each
tram/bus instance until time point t = 45, we use the partition-based window function pidx,n, where:

idx(tram(ai, X)) = i,

idx(bus(bi, X)) = i+ 2,

idx(c,X) = 0 for all c ∈ G \ {tram(ai, Y ), bus(bj , Z)},
n(i) = (1, 0) for i > 0,

n(0) = (0, 0).

This gives us four substreams for D at 45:

S1 = ([36, 45], {36 7→ {tram(a1, b)}, 44 7→ {tram(a1,m)}})

S2 = ([40, 45], {40 7→ {tram(a2, h)}, 43 7→ {tram(a2,m)}})

S3 = ([36, 45], {36 7→ {bus(b1, b)}, 40 7→ {bus(b1, s)}})

S4 = ([45, 45], {45 7→ {bus(b2,m)}})

Applying the tuple-based windows with n(i) = (1, 0), i > 0, results in:

S′1 = ([44, 45], {44 7→ {tram(a1,m)}})

S′2 = ([43, 45], {43 7→ {tram(a2,m)}})

S′3 = ([40, 45], {40 7→ {bus(b1, s)}})

S′4 = ([45, 45], {45 7→ {bus(b2,m)}})

Finally, the union of S′1 to S′4 gives us the result of the partition-based window:

pidx,n(D, 45) = ([40, 45], υ),

where

υ = {40 7→ {bus(b1, s)}, 43 7→ {tram(a2,m)}, 44 7→ {tram(a1,m)}, 45 7→ {bus(b2,m)}} . �

The partition-based window works in three steps. First, in partitions the stream into substreams, second, it
applies a tuple-based window on each of them, and third, it merges together the result. If the tuple-based
window is needed only on a single substream, we may use a filter window instead of a designated index
function.



12 INFSYS RR 17-03

Time-based: �`,u,d := �τ`,u,d �` := �τ`,0,1 �+u := �τ0,u,1

Tuple-based: �#`,u := �#`,u
�#` := �#`,0

�#+u := �#0,u

Partition-based: �idx,n := �pidx,n

Filter: �A := �fA

Figure 7: Definition of window operator shortcuts

2.6 Filter Window

For a set A ⊆ G of atoms, we define the projection of υ to A by υ|A(t) = υ(t) ∩A for all t ∈ N.

Definition 6 (Filter window). Let S = (T, υ) be a stream, t ∈ N, and A ⊆ G be a set of atoms. The filter
window function for A (at time t) is defined by

fA(S, t) = (T, υ|A). (2)

Note that the filter window function is essentially independent of time, i.e., it always retains the timeline
and returns the same result for all t ∈ N, in particular, for t 6∈ T . Thus, the filter windows selects atoms
independent of time and the timeline can remain entirely. This is dual to the time-based window, where all
atoms in the selected timeline can remain, and this timeline is selected independent of atoms. In this view,
the partition-based window can be seen as the application of tuple-based windows on the result of filter
windows, which are then merged together.

Example 7 (cont’d). Selecting the last appearance of tram a1 amounts to first filtering for atoms of form
A = {tram(a1, st) | st ∈ C}, and then selecting the last tuple from this intermediate stream. That is, by
fA(D, 45) we getD′ = (T, υ′), where υ′ = {36 7→ {tram(a1, b)}, 44 7→ {tram(a1,m)}}. The tuple-based
window of size 1 of D′ at 45 then returns ([44, 45], {44 7→ {tram(a1,m)}}). �

3 The LARS Framework

We now present an improved version of LARS (Beck et al., 2015), a Logic for Analytic Reasoning over
Streams. LARS extends propositional logic by for streaming data by employing any window function w
(Def. 2) in a window operator �w. Within the resulting substream, one can then control the temporal
modality of formulas, resp. access temporal information. Based on such formulas, LARS then provides
a rule-based language with a model-based, nonmonotonic semantics, which can be seen an extension of
Answer Set Programming for streaming data.

Before defining syntax and semantics of LARS below, we first present the central concepts informally.
Window operator & reset. If w is a window function, we call �w a window operator. Given a formula
α, the expression �wα has the effect that α will be evaluated on the window obtained by applying w in the
current stream S at the current time t. Dually, the reset operator . serves to re-access the original stream.
Temporal modalities. Regardless if formula evaluation is on the entire input stream or a window thereof,
we provide explicit means to deal with the temporal information. Let S = (T, υ) be a stream, i.e., the input
stream or a window, and t ∈ T be a time point. There are different ways to evaluate a formula α in S at t.
First, we express by @t′α, where t′ ∈ N∪U , that α has to hold when changing the evaluation time to t′. We
call t′ in @t′α a time pin; which is ground if t′ ∈ N, else non-ground. Next, time might be abstracted away.
That is to require that α holds at some time point t′ ∈ T , denoted by 3α. Dually, 2α shall hold iff α holds
at all time points in T . Based on these modalities, we define our language.



INFSYS RR 17-03 13

3.1 LARS Formulas

Definition 7 (Formulas). Let a ∈ A be an atom, t ∈ N ∪ U and w be a window function. The set F of
formulas is defined by the following grammar:

α ::= a | ¬α | α ∧ α | α ∨ α | α→ α | 3α | 2α | @tα | �wα | .α (3)

The set FG of ground formulas contains all formulas where each term and each time pin is ground. In
addition to streams, we consider background knowledge in form of static data, i.e., a set B ⊆ GEB of ground
atoms which does not change over time. From a semantic perspective, the difference to streams is that static
data is always available, regardless of window applications.

The following definitions concern the semantics of ground formulas.

Definition 8 (Structure). Let S = (T, υ) be a stream, W be a set of window functions and B ⊆ GEB a set
of facts. Then, we call M = 〈S,W,B〉 a structure, S the interpretation stream and B the background data
of M .

We now define when a ground formula holds in a structure.

Definition 9 (Entailment). Let M = 〈S?,W,B〉 be a structure, S? = (T ?, υ?) and let S = (T, υ) be a sub-
stream of S?. Moreover, let t ∈ T ?. The entailment relation  between (M,S, t) and formulas is defined as
follows. Let a ∈ G be an atom, let α, β ∈ FG be ground formulas and w ∈W . Then,

M,S, t  a iff a ∈ υ(t) or a ∈ B,
M,S, t  ¬α iff M,S, t 1 α,
M, S, t  α ∧ β iff M,S, t  α and M,S, t  β,
M, S, t  α ∨ β iff M,S, t  α or M,S, t  β,
M, S, t  α→ β iff M,S, t 1 α or M,S, t  β,
M, S, t  3α iff M,S, t′  α for some t′∈ T,
M, S, t  2α iff M,S, t′  α for all t′∈ T,
M, S, t  @t′α iff M,S, t′  α and t′ ∈ T,
M, S, t  �wα iff M,S′, t  α,where S′ = w(S, t),
M, S, t  .α iff M,S?, t  α.

If M,S, t  α holds, we say that (M,S, t) entails α. Moreover, we say that M satisfies α at time t,
if (M,S?, t) entails α. In this case we write M, t |= α and call M a model of α at time t. Satisfaction
and the notion of a model are extended to sets of formulas as usual.

Example 8 (cont’d). Let D = (T, υ) be the data stream of Example 3 and S? = (T ?, υ?) ⊇ D be a stream
such that T ? = T and

υ?=

{
36 7→ {tram(a1, b)}, 40 7→ {tram(a3, h),
43 7→ {exp(a3,m)}, 44 7→ {exp(a1,m)}

}
.

Let M = 〈S?,W,B〉, where W = {τ0,5,1}, and B is the set of facts from the data tables in Example 1.
Then M,S?, 42  �+53exp(a3,m) holds: the window operator �+5 selects S′ = (T ′, υ′), with timeline
T ′ = [42, 47] and υ′ = {43 7→ {exp(a3,m)}, 44 7→ {exp(a1,m)}}, i.e., there is some t′ ∈ T ′ (t′ = 43)
such that M,S′, t′  exp(a3,m). �
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We note that the original presentation of LARS (Beck et al., 2015) employed a so-called stream choice in
window operators that allowed to direct the window function to be applied on the original stream S? (stream
choice 1) and the current stream S (stream choice 2). Definition 9 presents a cleaner approach, where a
window operator is always applied on the current stream. In case the original stream needs to be re-accessed
in nested windows, this can be done by an explicit reset step ., followed by a window operator �w. We
define this combination as input window operator �w := .�w.

Example 9. Consider a monitoring use case where a signal s must always appear within 5 minutes. Testing
whether this condition holds for the last hour amounts to the formula �602�53s: We first select by a
sliding time-based window the last 60 minutes. At every time point in this window, it must hold that if
we consider the last 5 minutes there, signal s holds at some time point. Notably, by using �5 instead of
�5 we ensure that this inner window reaches beyond the limits of the first. For instance, consider a stream
S = ([0, 500], υ). First, at t = 500, �60 selects S′ = (T ′, υ|T ′), where T ′ = [440, 500]. During evaluation
of 2 at t′ = 440, �5 now selects S|[435,440], while �5 would select S′|[440,440], since the timeline in S′ only
starts at 440. �

Another subtle improvement over the previous version (Beck et al., 2015) concerns the fact that a window
operator �w may return a substream that does not contain the evaluation time point, i.e., w(S, t) = (T ′, υ′)
does not imply t ∈ T ′. However, given a (sub)formula �wϕ, one typically wants to evaluate ϕ in the
obtained window regardless of the specific evaluation time and its position relative to the window. While
this could be technically handled for relevant cases, we now consider time points t ∈ T ?, and not t ∈ T .
That is to say, the evaluation time point t needs to be contained only in the global timeline T ?, not in the
timeline T of the current substream S.

Example 10. Consider again Figure 4, which illustrates the progress of a tumbling time-based window of
size 3, i.e., the function τ3,0,3. Assume further we are interested whether an atom x occurs in this window
when evaluated at time 8. Accordingly, we evaluate M,S, 8  �3,0,33x and the substream returned by
τ3,0,3 has timeline [3, 6]. We still expect that the entailment holds iff x appears within [3, 6], regardless of
the fact that 8 6∈ [3, 6]. �

Notably, allowing any t ∈ T ? in formula evaluation not only serves the applicability of windows such as
hopping or tumbling windows. It also allows one to inspect whether the evaluation time is contained in
the current timeline T . This possibility stems from the requirement that t′ is contained in T for @t′α
to hold: the standard tautology > := a ∨ ¬a holds (in all structures) at every time point t ∈ T ?, where
entailment is defined; however, @′t> holds if and only if t′ ∈ T . Since also time points t ∈ T ? \ T can be
evaluated, formulas can express conditions based on T . For instance, M,S, t  �w(@t> ∧ ϕ) holds only
if t is contained in the timeline of w(S, t).
Queries & non-ground formulas. We now consider the use of variables, leading to open formulas and
queries.

Definition 10 (Query). Let M = 〈S,W,B〉 be a structure, α ∈ F be a formula and let u ∈ N ∪ U . Then,
the tuple Q = 〈M,u, α〉 is called a query. We say Q is ground if α and u are ground, else non-ground.

Given a ground query Q = 〈M, t, α〉, where M = 〈S,W,B〉, we define the answer ?Q to Q as yes , if
M,S, t  α holds, else no.

To define the semantics of non-ground queries, we need the notions of a substitution σ, defined as
mapping V ∪ U → C ∪ N that assigns (i) each variable V ∈ V a constant σ(V ) ∈ C, and (ii) each time
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variable U ∈ U a natural number σ(U) ∈ N. The grounding σ(α) (resp. σ(u)) of formula α (resp. time pin
u) due to σ is obtained by applying the substitutions on variables/time variables as usual. Given a timeline
T , we say a substitution σ is over (C, T ), if the image of σ is contained in C ∪ T ; we denote by σ(C, T ) the
set of all such substitutions. With this, we define the answer ?Q to a non-ground query Q = 〈M,u, α〉 by

?Q = {σ ∈ σ(C, T ) |M,S, σ(u)  σ(α)}. (4)

This definition gives a general semantics to two important subclasses of non-ground queriesQ = 〈M,u, α〉.
First, if α is ground and u ∈ U is is a time variable, then the answer to Q amounts to the time points when
α holds. Dually, if u ∈ N and α is non-ground, we obtain a semantics for non-ground formula evaluation at
a fixed time point.

For queries, the set of window functions W in a stated structure M = 〈S,W,B〉 is implicitly given by
the window operators used in α. Unless stated otherwise, B is assumed to be empty.

Example 11. Consider the stream S = (T, υ) as shown in Figure 6, with T = [30, 50]. We ask:

Q1 At t = 45, which trams arrived at which stations in the last 5 minutes?
Q2 At t = 45, at which times and which stations did tram a2 arrive in the last 5 minutes?
Q3 At which times did we record a tram arrival at a station, where a bus arrived within the next 3 minutes?

We formalize these queries as Q1 = 〈M, 45, α1〉, Q2 = 〈M, 45, α2〉, and Q3 = 〈M,U, α3〉, where

α1 = �53tram(A,St),

α2 = �5@U tram(a2, St), and

α3 = tram(A,St) ∧�+33bus(B,St).

We obtain the following answers:

?Q1 = { {A 7→ a2, St 7→ h}, {A 7→ a2, St 7→ m}, {A 7→ a1, St 7→ m} }
?Q2 = { {St 7→ h, U 7→ 40}, {St 7→ m,U 7→ 43} }
?Q3 = { {A 7→ a1, St 7→ b, U 7→ 36, B 7→ b1}, {A 7→ a2, St 7→ m,U 7→ 43, B 7→ b2},

{A 7→ a1, St 7→ m,U 7→ 44, B 7→ b2} } �

We observe that the operator @ allows for replaying a historic query. At any time t′ > t, we can ask 〈M, t′,@tα〉
to simulate a previous query 〈M, t, α〉. In fact, this applies for any t′ ∈ N.

Example 12 (cont’d). Consider againQ1 from Example 11, where α1 is evaluated at t = 45, and an answer
σ ∈ ?Q1. Then, for any time point t′ ∈ N, σ is also an answer of 〈M, t′,@45α1〉, since by definition,
M,S, 45  σ(α1) iff M,S, t′  @45σ(α1) and 45 ∈ T . �

Nested windows. Typically, window functions are used exclusively to restrict the processing of streams to
a recent subset of the input. In our view, window functions provide a flexible means to discard data.

Example 13. In Example 7, we selected the last appearance of tram a1 in stream D of Figure 6 by first
using a filter window for tram atoms A = {tram(a1, st) | st ∈ C}, and followed by a tuple-based window.
We now also ask at which time U the tram was last recorded. The according LARS query Q = 〈M, 45, α〉
is given by M = 〈D, {fA,#1}, ∅〉 and α = �A �#1 @U tram(a1, St), which has the single answer σ =
{St 7→ m,U 7→ 44}. That is, tram a1 last appeared at station m at time 44. �
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LARS formulas provide a powerful, flexible language to query streaming data. However, the formalism
presented so far has no means of expressing auxiliary information, i.e., intensional atoms, and thus comes
with limitations.

Example 14. Dual to query Q3 in Example 11, we now want to ask for which tram appearances no bus
arrived within 3 minutes at the same station. The intended answer to this query should only contain tram a2

at station h at time 40. A naive translation simply adds negation to α3, i.e., α′3 = tram(A,St) ∧ ¬ �+3

3bus(B,St). However, the resulting queryQ′3 = 〈M,U, α′3〉 expresses the following: At which time points
U did some tram appear at station St, where within the next 3 minutes there was no bus recording at St for
any B, i.e., for any constant that can be substituted for B. Thus, whenever a tram ai is at station st at time
t, we hypothetically consider any atom bus(x, St), where x ∈ C, at time points n = t, t+ 1, t+ 2, t+ 3,
and get an answer of form {A 7→ ai, St 7→ st, B 7→ x, U 7→ t}, whenever there bus(x, st) is not in the
evaluations from υ(t) to υ(t+ 3) in D. That results in answers like the following:

{A 7→ a1, St 7→ b, B 7→ a1, U 7→ 36}
{A 7→ a1, St 7→ b, B 7→ a2, U 7→ 36}
{A 7→ a1, St 7→ b, B 7→ b2, U 7→ 36}
{A 7→ a1, St 7→ b, B 7→ s, U 7→ 36}
{A 7→ a1, St 7→ b, B 7→ h, U 7→ 36}

...
{A 7→ a2, St 7→ h, B 7→ b1, U 7→ 40}

...

Clearly, we can limit scope of B by considering only constants that have been observed as bus identi-
fiers so far, using α′′3 = tram(A,St) ∧ ¬ �+3 3bus(B,St) ∧ 3bus(B,St′). The additional subformula
3bus(B,St′) now matches all bus appearances throughout the stream and will thus be joined with every
tram appearance tram(A,St) (at time U ). Semantically, this cross product yields potential answers of form
{A 7→ ai, St 7→ st, B 7→ x, St′ = st′, U 7→ t}, which are reduced by those entries for which bus(x, st)
appeared between t and t + 3. For instance, {A 7→ a1, St 7→ b, B 7→ b1, St 7→ y, U 7→ 36}, where
y ∈ {b, s,m}, is not returned since bus(b1, b) appeared at 36. We get, among others, the following answers:

{A 7→ a1, St 7→ b, B 7→ b2, St
′ 7→ b, U 7→ 36}

{A 7→ a1, St 7→ b, B 7→ b2, St
′ 7→ s, U 7→ 36}

{A 7→ a1, St 7→ b, B 7→ b2, St
′ 7→ m, U 7→ 36}

{A 7→ a2, St 7→ h, B 7→ b1, St
′ 7→ b, U 7→ 40}

{A 7→ a2, St 7→ h, B 7→ b1, St
′ 7→ s, U 7→ 40}

{A 7→ a2, St 7→ h, B 7→ b1, St
′ 7→ m, U 7→ 40}

{A 7→ a2, St 7→ h, B 7→ b2, St
′ 7→ b, U 7→ 40}

{A 7→ a2, St 7→ h, B 7→ b2, St
′ 7→ s, U 7→ 40}

{A 7→ a2, St 7→ h, B 7→ b2, St
′ 7→ m, U 7→ 40}

...

The first question is how the result shall be interpreted. The non-essential St′ does not capture anything of
the conceptual query, which does not talk about stations of arbitrary bus stations. To remedy this, a simple
post-processing may filter out such bindings and reduce resulting duplicates accordingly. However, this still
leaves wrong results. For instance, the first three answers would reduce to {A 7→ a1, St 7→ b, B 7→ b2, U 7→
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36}. What this answer says is that bus b2 did not arrive at station b within 3 minutes, but we intended to
query for tram appearances after which no bus arrived. �

The fundamental problem in Example 14 is that we query for substitutions of a bus identifierB when we are
interested in cases where none exists. That is, we have to abstract away from specific bus existences which
can only be expressed by auxiliary atoms, i.e., intensional atoms. Thus, towards more expressive reasoning
over data streams, we now introduce LARS programs.

3.2 LARS Programs

Now we define a rule language for stream reasoning with semantics similar to Answer Set Programming.

Definition 11 (Rule, Program). A program P is a set of rules, i.e., expressions of the form

α← β1, . . . , βn, (5)

where α, β1, . . . , βn ∈ F are formulas.

Given a rule r of form (5), H (r) denotes the head α, and β(r) = β1 ∧ . . . ∧ βn the body of r; the commas
in (5) are a syntactic variant of ∧ as usual.

Suppose we want to evaluate a program P on a data stream D. Let I = (T, υ) be a stream such
that D ⊆ I . If at every time point in T , all atoms that occur in I but not in D have intensional predicates,
then we call I an interpretation stream for D. Any rule r amounts to the material implication

β(r)→ H (r). (6)

Consider a structure M = 〈I,W,B〉, called an interpretation (for D). We then say

• M is a model of P for D at time t, denoted M, t |= P , if M, t |= β(r)→ α(r) for all rules r ∈ P ;

• M a minimal model, if no model M ′ = 〈S′,W,B〉 of P for D at time t exists such that S′ = (T, υ′)
and S′ ⊂ S.

Note that minimality is defined w.r.t. to the same timeline T . We often omit “for D” and/or “at t” if
this is clear from the context. The reduct of a program P with respect to M at time t is defined by
PM,t = {r ∈ P |M, t |= β(r)}, i.e., the subset of rules whose bodies are satisfied.

Definition 12 (Answer Stream). Let M = 〈I,W,B〉 be a structure, where I = (T, υ) is an interpretation
stream for a data stream D, let P be a program and t ∈ T . Then, I is called an answer stream of P for D at
time t (relative to W and B), if M is a ⊆-minimal model of the reduct PM,t for D at time t.

For ASP fragments of LARS, answer streams correspond to answer sets as defined by the FLP-reduct (Faber
et al., (2004)), which we formulated for LARS programs above. More precisely, consider an interpretation
stream I = ({t}, υ′) for a data stream D = ({t}, υ) and let PASP be a program where in each rule of
form (5) all body formulas βi are literals, i.e., atoms or negated atoms, and the head α is a disjunction of
atoms. Then, we have:

Proposition 1. For I and PASP as described, I is an answer stream of P for D at t relative to arbitrary W
and B iff υ′(t) is an answer set of PASP ∪ υ(t) ∪B.
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That is, ordinary answer set programs are subsumed by LARS programs.
Non-ground programs. As for formulas, we consider non-ground programs as schematic versions of
ground programs with variables of two sorts, namely constant variables V and time variables U . The se-
mantics of these non-ground programs is given by the answer streams of according groundings, obtained by
replacing variables with constants from C, respectively time points from T , in all possible ways.

Example 15 (cont’d). We now solve the problem of Example 14 as follows: the intention of formula α′3 is
formalized as rule r1 which uses the intensional atom aBus , derived by rule r2:

r1 : q(U,A, St)← @U tram(A,St),@U¬�+33aBus(St);

r2 : @UaBus(St)← @Ubus(B,St).

Here, q is the output relation which may be used for post processing and aBus is the intended abstraction
for the appearance of any bus at the given station St. Rule r2 assigns to any time point U an (intensional)
atom aBus(St) whenever there is an atom bus(B,St) at U .

Apart from the expressiveness issue, intensional atoms may also be used to enhance readability. For
instance, the complex formula @U¬ �+3 3aBus(St) in r1 may be simplified, giving the subformula
�+33aBus(St) a name on its own. This leads to the following approach:

r′1 : q(U,A, St)← @U tram(A,St),@U¬busSoon(St),

r′2 : @UbusSoon(St)← @U �+3 3bus(B,St).

Note further that rule r′2 may be written without the use of a window as

@UbusSoon(St)← @U ′bus(B,St), U ′ > U, U ′ − U ≤ 3.

Using the program P = {r′1, r′2}, we now get the intended result in the single answer stream I = (T, υI) at
t = 45: the evaluation function υI contains the assignments of intensional atoms

33, 34, 35, 36 7→ {busSoon(b)},
37, 38, 39, 40 7→ {busSoon(s)},
42, 43, 44, 45 7→ {busSoon(m)}, and additionally

45 7→ {q(40, a2, h)}.

Derivation q(40, a2, h) correctly reflects that only at station h no bus appeared within 5 minutes after a tram
appearance (tram a2 at minute 40). �

Particular semantic assets for LARS programs are inherited from Answer Set Programming, i.e., a multiple-
model semantics permitting nonmonotonic reasoning.

Example 16 (cont’d). The requests (i) and (ii) from Example 1 can be formulated by rules (7) and (8),
respectively.

@T exp(ID , Y ) ← �idx,n @T1tram(ID , X), line(ID , L),¬�20 3jam(X),

plan(L,X, Y,D), T = T1 +D. (7)

gc(ID1, ID2, X) ← @T exp(ID1, X),@T �+5 3exp(ID2, X),

ID1 6= ID2,¬old(ID2). (8)
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Rule (7) encodes when a tram is expected at later stops. For the partition-based window operator �idx,n,
we use idx(at) = i for an atom at of form tram(ai, X) and idx(at) = 0 else. By the tuple-based windows
of sizes n(i) = (1, 0) for i > 0 and n(0) = (0, 0) applied on the i+ 1 obtained substreams, we thus get for
each tram ai only its most recent appearance at some stop X . Usually, the expected arrival time on the next
stop can be computed by the travelling duration according to the table plan . For the case of traffic jams
within the last 20 minutes, we block such conclusions by means of default negation.

Next, rule (8) builds on the expected arrival times of rule (7) to identify good connections where the
targeted tram is not an old make and the expected waiting time is at most 5 minutes. It uses a time-based
window that looks 5 minutes ahead from the time when exp(ID1, X) is concluded and checks the existence
(operator 3) of an expected (different) tram ID2.

We observe that the interpretation stream of the structure M of Example 8 is an answer stream of P
for D at time t. Note that gc(a3, a1,m) is not derived. Tram a1 appears one minute after a3 at Mozart
Circus, but it is old. �

The next example demonstrates another advantage of our rule-based approach, namely the possibility to
obtain different models for nondeterministic choices.

Example 17 (cont’d). Consider an extended scenario where a tram with identifier a2 of line `2 is reported
at Gulda Lane (g) at time point 38. This updates the data stream D = (T, υ) in Example 2 to D′ = (T, υ′),
where υ′ = υ ∪ {38 7→ {tram(a2, g)}}. By the entries line(a2, `2) and plan(`2, g,m, 7) in B, rule (7)
derives that tram a2 is expected to arrive at Mozart Circus at t = 45. Furthermore, we now assume that
tram a1 is not old, i.e., old(a1) 6∈ B. This gives Bob three good connections at stop m, when leaving
tram a3 at time 43:

G = {gc(a3, a1,m), gc(a1, a2,m), gc(a3, a2,m)}

Bob is not interested in the connection from a1 to a2, since he is currently travelling with a3. His smart
phone streams an according tuple on(a3) at query time. This leaves him two options: He can either change
to line `1 (and take tram a1 after 1 minute at time point 44), or to line `2 (and take tram a2 after 2 minutes
at 45). The following two rules formalize the possibility to either change trams or skip a good connection:

change(ID1, ID2, X)← on(ID1), gc(ID1, ID2, X),¬skip(ID1, ID2, X). (9)

skip(ID1, ID2, X)← gc(ID1, ID2, X), change(ID1, ID3, X), ID2 6= ID3. (10)

Consider the programP consisting of rules (7)-(10). Moreover, letD′′ = (T, υ′′) be the data stream obtained
from D′ by adding {42 7→ {on(a3)}} to the evaluation and let I0 = (T, υ0), I1 = (T, υ1) and I2 = (T, υ2)
be the following interpretation streams for D′′: We take

υ0 = υ ∪
{

42 7→ G, 43 7→ {exp(a3,m)}
44 7→ {exp(a1,m)}, 45 7→ {exp(a2,m)}

}
,

and for i ∈ {1, 2}, let υi = υ0 ∪ {42 7→ choicei}, where

choice1 = {change(a3, a1,m), skip(a3, a2,m)}, and

choice2 = {change(a3, a2,m), skip(a3, a1,m)}.

Then, I1 and I2 are (the only) two answer streams for P at time 42 relative to W = {τ ,p} and B, i.e., we
get the user choices as separate models. �
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Note that in this example we did not constrain good connections by the actual destination Bob wants to
reach. By means of the presented formalism, such reachability relations can be expressed elegantly through
recursion as in Datalog.

Another benefit of our approach for advanced stream reasoning is the possibility to retract previous
conclusions due to new input data. Combined with (minimal) model generation, i.e., alternatives that may
be enumerated, compared under preference etc., such nonmonotonic reasoning allows for sophisticated AI
applications in data stream settings.

Example 18 (cont’d). If the lines `1 and `2 have the same travelling time from Mozart Circus to Strauß
Avenue, Bob will pick choice1 (answer stream I1), since at t = 42 tram a1 is expected to arrive one minute
earlier than tram a2.

Suppose a few seconds later (still at t = 42) a traffic jam is reported for Beethoven Square. Thus, we
now consider the data stream Dj = (T, υj), where υj = υ ∪ {42 7→ {on(a3), jam(b)}}. Thus, we have no
expectation anymore when tram a1 will arrive at Mozart Circus. Now exp(a1,m) cannot be concluded for
t = 44, and as a consequence, gc(a3, a1,m) will not hold anymore. Thus, the previous two answer streams
are discarded and only change(a3, a2,m) remains recommended in the resulting unique answer stream. �

3.3 Semantic Properties of LARS Programs

In this subsection, we show that some basic properties of the answer semantics of logic programs carry
over to the notion of answer stream defined above. These are minimality of answer streams, supportedness
by rules and consistency, i.e., existence of an answer stream in the absence of negation provided that the
windows functions involved are monotonic, i.e., return growing substreams if the stream data increases.

Let P be a program, D be a data stream and t ∈ N. By AS (P,D, t) we denote the set of answer streams
of P forD at time t. The letterM always stands for the structureM = 〈I,W,B〉, where I is the considered
answer stream, and W and B are implicit and fixed.

By Definition 12, the structure M (due to answer stream I) is a minimal model of the reduct PM,t for
D at time t. Importantly, this implies that M is a model of the original program P , and in fact a minimal
model.

Theorem 1 (Minimality of answer streams). Let P be a LARS program, D be a data stream, t be a time
point and I ∈ AS (P,D, t). Then, M = 〈I,W,B〉 is a minimal model of P for D at time t.

Thus, answer streams warrant the property of minimality that answer sets enjoy, in the spirit of logic pro-
gramming semantics. A simple consequence of minimality of models is the following.

Corollary 1 (Incomparability). Answer streams are incomparable w.r.t. ⊆. That is, if I, I ′ ∈ AS (P,D, t),
then I 6= I ′ implies I 6⊆ I ′ and I ′ 6⊆ I .

Our definition of answer streams follows the approach in (Faber et al., 2004), which requires a supporting
rule for every derived atom. In other words, dropping any atom from an answer set would invalidate some
rule. In our case, dropping an intensional atom a from an answer stream would lead to an unsatisfied rule
that supports its derivation for some time point t′. To simplify notation, we consider I = (T, υ) also as set
{t′ 7→ a | a ∈ υ(t′), t′ ∈ T}. Accordingly, I \ {t′ 7→ a} amounts to removing in I atom a from υ(t′), etc.

Theorem 2 (Supportedness). Let I ∈ AS (P,D, t). Then, for every t′ 7→ a ∈ I \D there exists a rule
r ∈ P such that (i) M, t |= β(r) and (ii) M ′, t 6|= r, where M ′ = 〈I \ {t′ 7→ a},W,B〉.
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Note that the conditions (i) and (ii) in Theorem 2 amount for ordinary logic programs to the usual notion
of supportedness of answer sets; if the rule head α = a1 ∨ · · · ∨ ak in (ii) is a disjunction of atoms, then M
must satisfy a single atom ai in α, and ai = a.

Finally, let us consider LARS programs in which α and each formula βi are positive, i.e., each atom
occurs in the formula tree only under an even number of negations; we call such programs positive. As for
windows, we naturally call a window function w monotonic, if for any streams S and S′ such that S ⊆ S′

and for any time t′ it holds that w(S, t′) ⊆ w(S′, t′). Then we obtain

Theorem 3 (Consistency). Let P be a positive LARS program such that all heads α of rules in P are satisfi-
able and all window operator �w occurring in P have monotonic window functions w. Then for any D and
t, (i) AS (P,D, t) 6= ∅ and (ii) any M = 〈I,W,B〉 is a minimal model of PM,t at t iff I ∈ AS (P,D, t).

For example, time-based sliding windows are monotonic and likewise the other time-based windows con-
sidered above; furthermore, also filter windows are monotonic. Tuple-based sliding windows (thus also
partition-based windows) are not monotonic, and the statement in the theorem does not hold, even for very
restricted rule syntax.

Example 19. Consider the program P consisting of the rules

r0 : c.

r1 : d ← �#13c.

r2 : a ∧ b ← d.

r3 : b ← �#13a.

r4 : a ← �#13b.

and assume that the tie-break in the tuple selection is by lexicographic ordering, i.e., a before b before c
before d. Informally, �#13x expresses that the single selected tuple is x. Then M = 〈I,W,B〉 where (in
abuse of notation) I = {a, b, c} is a model of P for the data stream D = ([0, 0], ∅) at t = 0. Moreover, it
is the single minimal model for D at t: for any other model M ′ = 〈I ′,W,B〉, we have that d ∈ I ′ implies
I ′ = {a, b, c, d} (by r0 and r2), which is not minimal. Furthermore, {a, b} ∩ I ′ = ∅ would lead by r1 and
r2 to {a, b} ⊆ I ′, which is contradictory; similarly I ′ = {c, a} (resp. I ′ = {c, b}) would lead by r3 to b ∈ I ′
(resp. by r4 to a ∈ I ′), which is again a contradiction. Thus, M is the only answer stream candidate.
However, the reduct PM,t = {r0; r3} has a model M ′ = 〈I ′,W,B〉 for D at t where I ′ = {c, b}. Thus, M
is not an answer stream of P for D at t = 0 and AS (P,D, t) = ∅ follows. (The same holds if we replace r2

with rules a← d and b← d; the resulting program is in the plain LARS fragment; cf. Section 6.1.1.) �

However, refined versions of tuple-based windows, which e.g. count only extensional data (as occurs often in
practice), are monotonic and thus admissible in Theorem 3; furthermore, monotone windows can be nested
as monotonicity is preserved. We remark that the consistency result (part (i) of the theorem) can be extended
to classes of programs with layered (stratified) negation and recursion through non-monotonic windows.

We note that Definition 11 is liberal in the sense that it permits extensional atoms also in rule heads. This
is convenient in some scenarios with complex rule heads. Notably, any answer stream for a data stream D
may only add intensional atoms to D. Thus, satisfaction of extensional atoms in rule heads anyway hinges
on the inputD; it is not possible to infer input data. If desired, one may rewrite a program in order to exclude
extensional atoms from rule heads. To this end, one replaces every extensional predicate p (that is mentioned
in a rule head) by a fresh intensional predicate p′ and adds the rules @T p

′ ← @T p, @T ¬p′ ← @T ¬p (or
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formula class program class
Problem α α− P P−

Model Checking (MC) PSpace P PSpace co-NP
Satisfiability (SAT) PSpace NP PSpace Σp

2

Table 1: Complexity of reasoning in ground LARS (completeness results)

for the latter rule, alternatively the constraint ⊥ ← 3(p′ ∧ ¬p) ). In case a ground program is required that
works for all inputs, one may alternatively use the following set of rules, where p′′ is another fresh predicate:

2(p′ ∨ p′′) ← .
⊥ ← 3(p ∧ p′′).
⊥ ← 3(p′ ∧ p′′).

Clearly, using these encodings, the answer streams of the original program P and of the rewritten program
P ′ are in one-to-one correspondence. Moreover, we note that for programs that do not use extensional
predicates in rule heads, data streams can be reduced to programs without extensional data, by replacing any
input atom p ∈ υ(t) in a data stream D = (T, υ) by the fact @t p←.

In conclusion, we find that LARS programs have basic semantic properties comparable to those of
ordinary answer set programs under the FLP-reduct. They can thus be seen as an extension of ASP for use
cases in streaming with flexible window functions.

4 Computational Complexity of Reasoning in LARS

In this section, we analyze the computational complexity of LARS, where we consider model checking
and the satisfiability problem, for both LARS formulas and programs. In our analysis, we concentrate on
the general case but pay attention to the effect of nested windows and particular classes of windows; a
comprehensive study of the computational complexity for a rich taxonomy of classes of LARS formulas
and LARS programs remains however for further study.

4.1 Problem Statements and Overview of Results

We say that a stream S = (T, υ) is over a subset A′ ⊆ A of atoms A, if v(t) \ A′ = ∅ for all t ∈ T . We
study the complexity of the following reasoning tasks, where in the sequel W is a set of window functions
that are evaluable in polynomial time, B ⊆ A is a set of background atoms, and where α is a ground LARS
formula and P a ground LARS program.

(1) Model Checking (MC). Given M = 〈S?,W,B〉, S? = (T, υ), and t ∈ T , check whether

• for a given stream S ⊆ S? and formula α it holds that M,S, t  α; respectively

• I = (T, v) is an answer stream of a given program P for a data stream D ⊆ I at t.

(2) Satisfiability (SAT). For decidability, we assume that relevant atoms are confined to a subset A′ ⊆ A
of polynomial size in the input. The reasoning tasks are:
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• Given W , B, a timeline T , a time point t ∈ T , and a formula α, does some stream S = (T, υ)
over A′ exist such that M,S, t  α, where M = 〈S,W,B〉?

• Given W , B, a data stream D with timeline T , a time point t ∈ T , and a program P , does P have
some answer stream for D at t that is over A′?

Table 1 shows the computational complexity of reasoning in ground LARS, where α− and P− denotes the
class of formulas respectively programs where the nesting depth of window operators in formulas and rules
is bounded by a constant.

As we can see from the Table 1, in the general case model checking and satisfiability checking are both
PSpace-complete, and thus beyond the Polynomial Hierarchy. Informally, the recursive evaluation of a
formula creates an exponential size tree, but at each point in time, only a polynomial size portion of this tree
needs to be in memory. The PSpace-hardness arises from the temporal operators 2 and 3 in combination
with window operators. This allows for encoding quantified Boolean formulas (QBFs), whose evaluation is
a canonical PSpace-complete problem.

The picture changes if we bound the window nesting depth in formulas and programs. Under a constant
bound, the evaluation tree that is built has only polynomially many nodes (i.e., substreams). This allows us to
solve the model checking problem for ground α− formulas in polynomial time by using labeling techniques.
The remaining results for satisfiability testing and for ground LARS programs are obtained from guess and
check algorithms. The lower bounds (the hardness results) are in essence inherited from the complexity of
answer set programs, except for model checking of LARS formulas. The P-hardness of the latter problem
is due to the generic form of windows whose associated functions can be P-hard.

Note that from the results on Model Checking in Table 1, we immediately obtain complexity results for
answering ground queries Q = 〈M, t, α〉: the problem is PSpace-complete in general, but polynomial for
bounded window-nesting; and as the discussion in Section 4.3 shows, this generalizes to a richer class of
queries.

4.2 Derivation of the Complexity Results

4.2.1 LARS Formulas

The complexity results for LARS formulas in the general case are based on the following result for model
checking.

Theorem 4. Given a structure M = 〈S?,W,B〉, a stream S = (T, υ) such that S ⊆ S?, a time point t, and
an arbitrary ground formula α, decidingM,S, t  α is PSpace-complete, where the PSpace-hardness holds
for S = S?.

Intuitively, PSpace-membership is shown by a depth-first-search evaluation of the input formula α along its
tree representation. An example for the formula tree is shown in Figure 8.

At each node of the tree, we need to store the content according to the window operators that are applied
as in the path from the root. This requires only polynomial space for that node and all nodes on the path to
it as well.

The PSpace-hardness is shown by a reduction from evaluating QBFs ∃x1∀x2 · · ·Qnxnφ(x) to model
checking. A LARS formula α = 3�set:x1 2�set:x2 · · ·φ(x) on the timeline T = [0, 1] is constructed
where the window operator �set:xi effects the possible truth assignments to xi at the time points 0 or 1.
To this end, the initial stream S? has all atoms x1, . . . , xn at both 0 and 1. When �set:xi is evaluated at
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Figure 8: Tree representation of formula �102(�#33a ∧ (�43b→ �52(¬c ∧ d)))

time point 0 (resp. 1), it removes xi from (resp. keeps xi in) the stream. By branching to 0 or 1, all truth
assignments to x1, . . . , xn are generated in an evaluation tree. On top, 3, 2 naturally encode the quanti-
fiers ∃ and ∀. Figure 9 shows an example evaluation tree: the bold lines mark subtrees for which, given
the assignment to x1, . . . , xi by the path, the subformula Qi+1xi+1 . . . Qnxnφ(x) evaluates to true. (More
details are given in the Appendix.)

For the satisfiability problem of LARS formulas, we obtain a similar result.

Theorem 5. Problem SAT for LARS formulas, i.e., given W , B, T , and t, is there a stream S = (T, υ) is
over A′ such that M,S, t  α, where M = 〈S,W,B〉, is PSpace-complete.

Informally, a suitable evaluation function can be guessed and checked in polynomial space, and from
NPSpace=PSpace we obtain membership in PSpace. On the other hand, LARS model checking can be
easily reduced to satisfiability testing (see Appendix).

4.2.2 LARS Programs

Based on Theorem 4, we show that model checking for ground LARS programs has the same complexity as
for LARS formulas in general.

Theorem 6. Problem MC for LARS programs, i.e., given a structure M = 〈I,W,B〉, a data stream D, a
program P , and a time point t, deciding whether I = (T, υ) is an answer stream of P for D at time t,
is PSpace-complete.

Informally, this holds because it suffices to check that M, t |= P and that no model M ′ smaller than M
exists that satisfies the reduct PM,t (at time t); building the latter and testing all candidate M ′ is feasible
in polynomial space. The PSpace-hardness is inherited from model checking for LARS formulas (see
Appendix).
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Figure 9: Evaluation tree for the formula 3�set:x1 2�set:x2 3�set:x3 (¬x1∧ (x2∨x3)), encoding the QBF
∃x1∀x2∃x3(¬x1 ∧ (x2 ∨ x3)). Nodes x1 x2 x3, x2 x3, etc. represent the streams with timeline [0, 1] and
interpretation υ(0) = υ(1) = {x1, x2, x3}, υ(0) = υ(1) = {x2, x3}, etc., as obtained by window operators
�set:xi .

For checking satisfiability of LARS programs, we obtain based on the previous theorem also PSpace-
completeness.

Theorem 7. Deciding SAT for LARS programs, i.e., given W,B,D and some LARS program P , does P
have some answer stream I over A′ for D at t, is PSpace-complete.

As for the membership part, a guess for an answer stream of P w.r.t. data stream D and a time point t has
polynomial size and can be verified in polynomial space; the PSpace-hardness is again inherited from model
checking for LARS formulas (see Appendix).

4.2.3 Bounded Window Nesting

Revisiting Figure 9, we see that an exponential size evaluation tree results from the evaluation of nested
window operators �set:xi , where each of them is evaluated at both time points 0 and 1. In this way, ex-
ponentially many different substreams are produced in the evaluation. Such an exponential explosion is
avoided, if we bound the nesting of window operators in LARS formulas.

Definition 13 (Window nesting depth wnd(α)). The window nesting depth of a LARS formula α, denoted
wnd(α), is the maximal number of window operators encountered on any path from the root to a leaf in
the formula tree of α.2 Formally, wnd(a) = 0 for every atom a and inductively wnd(¬α) = wnd(2α) =
wnd(3α) = wnd(.α) = wnd(α); wnd(α∧β) = wnd(α∨β) = wnd(α→ β) = max(wnd(α),wnd(β));
and wnd(�α) = 1 + wnd(α).

Note in particular that wnd(α) = 0 means no window operators occur in α, and that wnd(α) = 1 means
that window operators occur but unnested.

2For simplicity, we omit a more fine-grained definition of wnd that respects ., for which “encountered” is replaced by “encoun-
tered subsequently . . . with no . in between.” The tractability result carries over to the larger class of formulas.
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If #w(α) is the number of window operators occurring in a LARS formulaα, then at most (#w(α) · |T |)wnd(α)

many substreams of a stream S = (T, υ) (resp. S? = (T ?, υ?)) are created in a recursive evaluation of
M,S, t  α. If wnd(α) is bounded by a constant, then this number is polynomial in the size of S and α.
We can thus use a labeling technique to evaluate formulas bottom up (from subformulas) over the possible
substreams in polynomial time.

Theorem 8. Problem MC for LARS formulas α is in P, if wnd(α) is bounded by some constant k ≥ 0, and
is P-complete for arbitrary window operators.

The P membership part follows from a more general result in the next subsection (Theorem 10). We also
have matching P-hardness (and thus P-completeness) in general due to the fact that evaluating window
functions can be P-complete in general.

As a consequence of Theorem 8, also satisfiability of LARS formulas becomes easier to decide when
the nesting depth is bounded.

Corollary 2. Problem SAT for LARS formulas α is NP-complete, if wnd(α) is bounded by some constant
k ≥ 0.

The membership is via a simple guess and check argument. Since LARS subsumes propositional logic, the
problem is clearly also NP-hard.

Turning to LARS programs, let us define the window nesting depth for a program P naturally as follows.

Definition 14 (Window nesting depth wnd(P )). Given a LARS program P , its window nesting depth is
defined as wnd(P ) = max{wnd(β(r)→ α) | α← β(r) ∈ P}.

Our focus is here on finite LARS programs P , for which the nesting depth is always well-defined and finite.
For model checking such programs, we obtain the following result.

Theorem 9. Problem MC for LARS programs P is co-NP-complete, if wnd(P ) is bounded by some con-
stant k ≥ 0.

Informally, an answer stream I of program P can be refuted by a guess and check algorithm in polynomial
time, thanks to Theorem 8. The co-NP-hardness is inherited from the problem for ordinary answer set
programs. From Theorem 9, the following corollary is not difficult to obtain.

Corollary 3. Problem SAT for LARS programs P is Σp
2-complete, if wnd(P ) is bounded by some constant

k ≥ 0.

The membership in Σp
2 follows from Theorem 9, as a candidate answer stream for P w.r.t. a data stream

D and time point t can be guessed and checked in polynomial time with an NP oracle. The Σp
2-hardness

is inherited from propositional disjunctive logic programs, for which deciding answer set existence is Σp
2-

complete (Eiter & Gottlob, 1995).

4.3 Semantic Restriction: Sparse Windows

Bounding the nesting depth of windows serves as a restriction that allows us to obtain tractability of model
checking for LARS formulas. In addition to this syntactic criterion, we can obtain other important cases
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for which solving this problem is feasible in polynomial time due to semantic properties of the window
operators that occur in a LARS formula.

An important such property is that a window operator �w and a nested window operator �w1�w2 ,
applied to a stream S from a small (polynomial size) set of streams, always will return a stream from that
set. By sharing nodes in the substream evaluation tree, the resulting evaluation graph has polynomial size
and the relevant subformula labeling for deciding satisfiability can be produced in polynomial time.

A prototypical example of such “sparse” windows are sliding time-based windows �i,j (with hop size
d = 1) that cover the previous i and the next j time points. Applied on a stream S = (T, υ), the resulting
window at time point t is the substream S|T ′ , which restricts the timeline to T ′ = T ∩ [t− i, t+ j]. Notably,
the result of evaluating nested sliding time-based windows �i1,j1 · · ·�ik,jk also is a substream S′ obtained
by simply restricting the timeline; overall, there are O(|T |2) many such S′.

We next describe evaluation graphs and results for sparse windows in more detail, and then discuss
concrete classes of window operators that ensure the sparse window property. All time-based, tuple-based
and filter windows considered in Section 2.3, 2.4, and 2.6, respectively, are among them, as well as a large
class of partition-based windows in Section 2.5; furthermore, windows from these classes can be mixed
arbitrarily.

For uniformity, we regard in the sequel the reset operator . in abuse of the notion as a window operator
that yields, in the context of a structure M = 〈S?,W,B〉, the original stream; i.e., . is viewed as �wS?

.

where wS
?
. (S, t) = S? (for all t ∈ N).

Window graph. For any formula ϕ, we refer to the sequences of window operators �w1 → �w2 →
· · · → �wk of ϕ along the branches of the formula tree of ϕ, where k = 1, 2, . . . , as the window-paths
of ϕ. Consider now a structure M = 〈S?,W,B〉 and a substream S ⊆ S?. We call a set S of streams
an evaluation base of (M,S, ϕ) and write SB(M,S, ϕ) or simply SB , if it contains S and each stream
Sk+1 that results if we apply the window operators �wk , starting from S0 = S, at each time point of the
current stream Sk recursively along a window-path of ϕ. An evaluation base includes all streams that can be
encountered in the recursive evaluation of M,S, t  ϕ according to Definition 9, but it in general it includes
further streams as well (we shall discuss this aspect later in this section). Given such a base SB , the window
graph for (M,S, ϕ), denoted WGSB (M,S, ϕ) or simply WGSB is the graph WGSB = (N,E) with nodes
N = SB and edges E that are obtained inductively along window-paths as follows: add from the node Sk−1

for each time point t in Sk−1 an edge labeled (�wk , t) to Sk = wk(Sk−1, t), where S0 = S. Informally,
paths in WGSB starting at S allow us to navigate between substreams of S as obtained by window operators
as they occur in ϕ.

Example 20. Consider a structure M = 〈S?,W,B〉, where S? = ([0, 8], υ) and υ = {5 7→ {a}, 7 7→
{b}, 8 7→ {c}}, and the formula ϕ = �#2(�33b ∧�#13c). We take S = S?. The window-paths of
maximal length are p1 = �#2 → �3 and p2 = �#2 → �#1, i.e., on the initial stream S we can apply �#2

(at potentially every time point), and in the resulting streams one can apply �3, respectively �#1. We now
establish an evaluation base SB for (M,S, ϕ). The initial window operator �#2 yields potential windows
#2(S, 0), . . . ,#2(S, 8), i.e., by abbreviating the restriction S|T ′ to timeline T ′ = [a, b] by Sab, the streams
S00, S01, S02, . . . , S06, S57, S78. For path p1, we may now apply on any of these streams at their respective
time points the window function τ3, similarly for p2 function #1. This results in an evaluation base SB .
Note that some of these additional applications return their input stream, e.g., τ3(S78, 8) = S78, since the
timeline [7, 8] has size 1 and is not shrunk further by a time-based window of size 3.

As for the edges of the window graph WGSB , we add in the first step an edge S → S00 with label
(�#2, 0), an edge S → S01 with label (�#2, 1), . . . , and an edge S → S78 with label (�#2, 8). Then,
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in the second step for p1, we add an edge (S00 → S00, 0) with label (�3, 0), S01 → S00 with (�3, 0),
S01 → S01 with (�3, 1), . . . , S06 → S52 with (�3, 5), S06 → S36 with (�3, 6), . . . , S78 → S77 with
(�3, 7), and S78 → S78 with (�3, 8); and similarly with �#1 for p2. �

For our purposes, the following lemma is useful.

Lemma 1. Given a structure M = 〈S?,W,B〉, a substream S ⊆ S?, a formula ϕ and an evaluation base
SB for (M,S, ϕ), the window graph WGSB for (M,S, ϕ) is computable in polynomial time.

The proof is given in the Appendix.

Stream labeling. Given a structure M = 〈S?,W,B〉, a substream S ⊆ S? and a window graph WGSB =
(N,E) for (M,S, ϕ), we label each pair (S, t) such that S ∈ N and t ∈ T ?, where S = (T, υ), with relevant
formulas that hold in stream S at time t due to the evaluation base SB . We define the label set LSB (S, t) by
the following steps:

1. take a subformula �wkαk in ϕ such that �w1 → �w2 → · · · → �wk is a maximal window-path in
the formula tree of ϕ that has not yet been considered. We label each pair (S, t), such that S = Sk,
with all subformulas of αk that evaluate in the stream S at time t to true.

More precisely, we add a subformula α′ of αk to LSB (S, t), where S = (T, υ), by a case distinction
on the form of α′ due to Definition 9 as follows. We add:

− atom a, if a ∈ υk(t);

− ¬α, if α is not in LSB (S, t);

− α ∧ β, if α and β are in LSB (S, t); similarly for ∨ and→;

− 3α/2α, if α ∈ LSB (S, u) for some/all u ∈ T ;

− @uα, if α ∈ LSB (S, u) and u ∈ T .

This labeling can be carried out bottom up along the formula tree. Note that in the first application of
Step 1 αk does not contain any window operator.

2. We label (S, t), where S = Sk−1, with �wkαk if (Sk, t) was labeled with αk in Step 1.

3. Inductively, the window path �w1 → �w2 → · · · → �wi is considered in Step 1 for i < k, i.e., one
considers subformula �wiαi, after all window operators that occur in αi have been considered. Any
subformula �wjα of αi starting with a window operator is like an atom, and presence of �wjα in
LSB (Si, t) reflects the entailment result for this subformula in Si at t.

Example 21 (cont’d). Consider the window graph WGSB of Example 20. We are interested whether
M,S, 8  ϕ holds (S = S?) and start illustrating the bottom up evaluation by considering window-path
p2 at t = 8, i.e., edges S → S78 and S78 → S88 with window graph labels (�#2, 8) and (�#1, 8), re-
spectively. The (maximal) window-path p2 ends before subformula 3c which, in Step 1, is evaluated in
Sk = S88 = ([8, 8], {8 7→ {c}}). Thus, we obtain formula labels LSB (Sk, 8) = {c,3c}. In Step 2, we
thus get LSB (Sk−1, 8) = {�#13c}, where Sk−1 = S78 = ([7, 8], {7 7→ {b}, 8 7→ {c}}), i.e., the previous
stream in the considered path.
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Likewise, we evaluate subformula 3b for path p1 at t = 8, i.e., the edges S → S78 and S78 → S78 with
window graph labels (�#2, 8) and (�3, 8), respectively. In Step 1, we add label 3b to LSB (S78, 8). Note
that b does not hold at time 8 in S78 but b ∈ LSB (S78, 7) (and 7 ∈ [7, 8]) from similar evaluation, e.g., along
path S → S78 → S77 with window graph labels (�#2, 8) and (�3, 7), respectively. Thus, we add in Step 2
to the formula �33b to LSB (S78, 8) (note that in this path Sk = Sk−1).

Step 3 recognizes that all window operators of the conjunction ϕ′ = �33b ∧ �#13c have been con-
sidered. Hence, we go to Step 1 and find that for the formula αk = ϕ′ both conjuncts �33b and �#13c
are in LSB (S78, 8), i.e., ϕ′ holds and is added. In the next Step 2, we consider Sk−1 = S, i.e., the original
stream before evaluating �#2. (That is, we navigate back the first edge S → S78 with label (�#2, 8) for
either path.) Since ϕ′ has been added to (S78, 8) in Step 1, we now assign LSB (S, 8) = {�#2ϕ′}. Finally,
we recognize in Step 3 that no window operator remains to be considered along paths p1 and p2 at t = 8.
We skip the stream labeling of further pairs (S, t), as we already obtained that ϕ ∈ LSB (S, 8) which means
that M,S, 8  ϕ holds. �

Proposition 2. Let SB be an evaluation base for (M,S, ϕ), where M = 〈S?,W,B〉 and S ⊆ S?, and let
t ∈ T ?. Then, it holds that M,S, t  ϕ iff ϕ ∈ LSB (S, t).

Formally, this proposition can be proved by induction on the formula structure. We thus obtain an algorithm
to decide M,S, t  ϕ as follows:

1. given an evaluation base SB for (M,S, ϕ), compute the window graph WGSB ;

2. compute the labeling LSB for ϕ;

3. return “yes” iff ϕ ∈ LSB (S, t).

The correctness of this algorithm follows from Proposition 2. Regarding its time complexity, it is not hard
to see that the algorithm runs in time polynomial in the size of SB , M and ϕ (see Appendix). In particular,
if the evaluation base SB is small, we obtain tractability.

Theorem 10. Let M = 〈S?,W,B〉 be a structure, S ⊆ S? and let ϕ be a formula. Suppose that (M,S, ϕ)
has some evaluation base SB of size polynomial in the size of M and ϕ. Then M,S, t  ϕ is decidable in
polynomial time.

The proof exploits that for an evaluation base SB of polynomial size, the window graph WGSB and the
labeling LSB (S, t) are constructed by the algorithm above in polynomial time. Notably, a suitable SB need
not be provided in the input. We can construct one on the fly along with the window graph WGSB : we
initialize SB to S and add any stream Sk not yet in SB to it, as in the Example 20. This in fact yields a
unique evaluation base for (M,S, ϕ) that is contained in every evaluation base, and is thus guaranteed to
have polynomial size.

As already mentioned, the presented stream labeling LSB for ϕ will in general contain more streams
than necessary for the evaluation of M,S, t  ϕ. We considered in Example 21 the entailment relation
M,S, 8  ϕ, where S has the timeline [0, 8]. All pairs (S′, t′) with a proper substream S′ of S that has a
timeline overlapping with [0, 6] are irrelevant, as the first window operator �#2 already restricts the relevant
timeline to [7, 8] and any further consideration affects only substreams of S78. This would be different
if a temporal modality ◦ ∈ {3,2,@t′} was in front of ϕ. More generally, if we consider a formula ◦ψ
such that ψ does not start with a temporal modality at some time point t, we observe that ◦ changes which
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time points have to be considered (i.e., all or some t′), while only a window operator in ψ will change the
timeline. Moreover, given a sequence ◦1 · · · ◦n of modalities, we observe that the first n − 1 are irrelevant.
Accordingly, we can restrict both the evaluation base SB and the window graph WGSB by considering the
last modality ◦ for the current stream Sk−1 to first determine the relevant time points t′ based on which we
step to Sk = (Sk−1, t

′). Following this intuition, we in fact skipped the discussion of most pairs (S′, t′) in
Example 21, by directly starting with the paths for t = 8 and focusing on the relevant streams in SB and the
relevant edges of the stream graph WGSB . It is feasible to obtain these relevant subsets in polynomial time
as well. While one can expect a significant speedup in a practical realization of this improvement, the worst
case polynomial complexity of the stream labeling procedure does not change. In a more fine-grained view
of the formula ϕ that looks besides window operators also at the occurrence of temporal operators, further
tractable fragments of LARS formulas could be identified; we leave this for future work.

On the other hand, from the theoretical perspective, we note that an even more abstract approach is
possible: we may alternatively define an evaluation base independently of a formula, i.e., purely based on a
structure M = 〈S?,W,B〉: Any (potentially infinite) sequence of window operators �w with w ∈W will
eventually not produce new streams. A given formula ϕ that only uses window functions from W only
represents a subset of these sequences. Sparse windows ensure that, even in this high-level approach, the
size of the evaluation base remains polynomial in the size of of the structure.
Sparse window classes. From Theorem 10 we immediately obtain the P-membership of model checking
for LARS formulas with bounded window nesting in Theorem 8. Furthermore, we can conclude that model
checking for LARS formulas with unbounded nesting is tractable for a broad class of window operators.

Concerning time-based window operators �`,u,d, as already observed above, evaluating the window
function τ `,u,d(S, t) on the stream S at time point t always yields a substream S′ = (T ′, υ′) = (T ′, υ|T ′),
i.e., S′ restricts S to the timeline T ′. If we apply a further time-based window on S′, we obtain another
stream of this form. Overall, there are O(|T |2) many such S′; if we take possible occurrence of the reset
operator . into account, there are O(|T ?|2) many such streams. Thus, Theorem 10 holds for all LARS
formulas that use only time-based window operators.

A similar consideration establishes the same result for tuple-based windows �#`,u: evaluating a tuple-
based window function #`,u(S, t) on the stream S at time point t yields a substream S′ = (T ′, υ′) of
S = (T, υ) that diverges from S = (T ′, υ|T ′) at most on the stream boundaries t` and tu, where T ′ = [t`, tu].
In any case, S′ is uniquely identified by the triple (`, u, t). If we apply a further tuple-based window on S′,
we again obtain a substream of S of this form; overall, there are O(|T ?| · A2) many such streams, where
A =

∑
t∈T ? |υ?(t)| is the total number of atoms in the stream S?, thus polynomially many.

Each tuple-based window �#`,u trivially amounts to a partition-based window �idxA,nA where all atoms
are in one partition. The question is thus whether also partition-based windows are sparse. Unfortunately,
the answer is negative.

Theorem 11. Problem MC for LARS formulas in which only partition-based windows occur is PSpace-
complete.

The PSpace-hardness can be shown by adapting the QBF reduction in the proof for arbitrary LARS formulas
in Theorem 4. An analysis of the proof shows that the result even holds if each partition-based window
creates only two partitions (which is the minimum in order not to collapse with a tuple-based window); it is
recursive nesting and the use of either changing partitions, or of changing tuple counts (or both) which leads
to intractability.

The result for tuple-based windows generalizes to partition-based windows, provided that the index
functions idx of the window operators �idx,n that occur in the formula partition the ground atoms G into
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groups that are formed from constantly many base groups Bi. That is, each group idx−1(i) is of the form
idx−1(i) =

⋃
B, where B ⊆ {B1, . . . , Bk} and G =

⋃k
i=1Bi, where k is constant. Let us call such parti-

tions meager. In this case, each (nested) result of evaluating a window function can be uniquely identified
by a tuple (`1, u1, . . . , `k, uk, t), and there are polynomially many such tuples.

Finally, let us consider filter windows as introduced in Section 2.6. Recall that the function fA(S, t)
associated with �A projects the input stream S to the atoms in A. We can extend the description for
partition-based windows results above by adding a concrete filterA that is applied prior to the partition-based
selection. While in general, semantically an exponential number of filters A are possible, for the concrete
evaluation of a LARS formula ϕ only filtersA that syntactically result from the formula matter, and there are
only linearly many of them. Thus, the number of relevant substream descriptions (`1, u1, . . . , `k, uk, t, A)
still polynomially bounded.

Clearly, the meager-partition representations include all tuple-based representations, which in turn in-
clude all time-based representations. Thus, we obtain the following result.

Theorem 12. For LARS formulasα (resp. LARS programsP ), problem MC is in P (resp. co-NP-complete),
if only time-based, tuple-based, meager partition-based, and filter windows occur in α (resp., in P ).

This result can be further generalized by allowing in addition restricted occurrence of arbitrary windows in
formulas. In particular, this holds if the nesting depth of such additional window operators in a formula is
bounded by a constant. This is because if on a root-path in the formula tree the encountered such windows
are �w1 , . . . ,�w` , then the resulting substream S can be described by a sequence

sd0,�w1 , sd1, . . . , sd`−1,�w` , sd`,

where each sdi = (`
(i)
1 , u

(i)
1 , . . . , `

(i)
k , u

(i)
k , t

(i), A(i)) is an extended partition-based window description. In
total, only polynomially many such descriptions will matter.

Thus in conclusion, for a wide range of formulas that are occur in practice the Model Checking problem
for LARS formulas is solvable in polynomial time. Furthermore, in frequent use cases with time-based
and tuple-based windows it will have low complexity inside P. Finally, based on the tractability of model
checking, for satisfiability the same results as for α− and P− in Table 1 using analog arguments.

4.4 Non-ground LARS

For open LARS formulas and non-ground programs, infinite groundings and arithmetic are a source of
undecidability. In analogy to database systems, and inspired by notions of safety in logic programming, we
make here the following assumption.

The set C of constants includes, besides those mentioned in a formula α respectively the program P ,
at most polynomially many further constants, and the set P of predicates plus C are part of the input; the
set of atoms A′ to consider is A′ = A, i.e., the set of all possible atoms over P and C (but not part of the
input). We disregard here arithmetic, respectively assume that it is provided over the range of interest (i.e.,
the timeline of the current stream) in the background data B.

The results for LARS formulas and programs in this setting are shown in Table 2, where an open
(schematic) LARS formula α(x) is viewed as a representative of all its instances. Besides the combined
complexity, where both the structure and the LARS formula resp. program are part of the input, we also
consider the data complexity, where the formula resp. program is fixed.

What we can observe is that in the general case, model checking is not more expensive than in the
ground case. This is because a naive instantiation of the formula resp. program to the ground case, which
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formula class program class
Problem α α− P P−

combined
complexity

Model Checking (MC) PSpace co-NP PSpace Πp
2

Satisfiability (SAT) NExpTime NExpTimeNP

data
complexity

Model Checking (MC) P co-NP

Satisfiability (SAT) NP ΣP
2

Table 2: Complexity of reasoning in non-ground (Datalog) LARS (completeness results)

would cause an exponential blowup, can be avoided. On the other hand, a model resp. answer stream S
witnessing satisfiability in the general case, may have exponential size in the input. This blowup dominates
the PSpace-complexity of model checking. Under data complexity, instantiation does not cause a blowup
and we obtain for both LARS formulas and programs the same results as in the ground case for bounded
window nesting, as in Table 1; the NP-, co-NP- and Σp

2-hardness parts are inherited from the complexity of
deciding answer set existence respectively answer set checking for (disjunctive) Datalog programs that are
subsumed by LARS formulas respectively programs.

Bounding the window nesting depth clearly does not affect the data complexity, nor the combined com-
plexity of satisfiability where the exponential stream size is dominating. For model checking, the co-NP
entry for LARS formulas α− is explained by the tractability of the problem in the ground case: a model
candidate can be refuted by guessing and checking an instance of the formula that violates the candidate.
Finally, the Πp

2-entry for LARS programs P− is explained by an additional minimality check; the NP- resp.
Πp

2-hardness is inherited from conjunctive query evaluation in databases resp. from answer set checking for
disjunctive Datalog programs, cf. (Eiter, Faber, Fink, & Woltran, 2007).

In order to avoid an inflation of formal statements, we confine here to a summarizing result.

Theorem 13. The complexity of Model Checking (MC) and Satisfiability (SAT) of an open LARS formula
α, respectively non-ground LARS program P , in the general case and for bounded window nesting, is as
listed in Table 2.

More proof details are given in the appendix. From the results in Table 2, we easily obtain the following
results for answering non-ground LARS formula queries.

Corollary 4. Given a structure M = 〈S,W,B〉 and a query Q = 〈M,u, α〉, deciding whether Q has some
answer over M is (i) PSpace-complete for arbitrary α in combined complexity, (ii) NP-complete for α
with bounded window nesting under combined complexity, and (iii) decidable in polynomial time (and
P-complete in general) under data complexity.

These results derive from the fact that Q has no answer, if for every grounding σ ∈ σ(C, T ), we have
that M, t, σ(u) 1 σ(α), which is equivalent to M, t, σ(u)  σ(¬α). From Theorem 13, we can thus infer
the membership parts, where in (iii) α (as the formula is fixed) amounts to the α− case and the number
groundings σ is polynomial. The PSpace-hardness for (i) is inherited from the ground case, and the NP-
hardness for (ii) from the classic NP-completeness of conjunctive query answering (Chandra & Merlin,
1977); finally, the P-hardness for (iii) is due the unrestricted windows.
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Note that based on Theorem 12 and the discussion after it, the NP-completeness of case (ii) generalizes
to queries with bounded window nesting if all time-based, tuple-based, meager partition-based and filter-
windows occurring in them are disregarded. Thus for practical settings, answering LARS formula queries
is NP-complete, and thus not harder than answering conjunctive queries.

5 Relation to other Languages and Formalisms

In this section we discuss the relationship of LARS with other formal languages for reasoning on data
streams, starting with the prominent linear temporal logic (LTL). Then, we investigate the continuous query
language (CQL), followed by a note on extensions of the SPARQL query language for streaming, i.e., C-
SPARQL and CQELS. Finally, we consider ETALIS as an example of a complex event processing language
that focuses on expressing of temporal intervals by rules. Further related work is discussed separately in
Section 6.2.

5.1 Temporal Logic

In this section, we compare LARS to temporal logic, where we naturally focus on linear time logic (LTL)
(Pnueli, 1977) extended with past time operators (PLTL) (Markey, 2003). Syntactically, these logics extend
propositional logic with temporal operators, according to the following syntax

φ ::= ⊥ | a | ¬α | α ∧ β | α ∨ β | α→ β | Xα | αUβ | X−1 α | αU−1 β;

where a ∈ G. The informal meaning of Xα is that α is true at the next point in time, and αUβ means that
α is from now on true until β is true at some point; X−1 α and αU−1 β are the counterparts for the past (not
available in LTL),3 i.e., that α is true at the previous point of time respectively that α has always been true
after some time point at which β was true. Important derived operators are Fα and Gα which are shorthand
for >Uα, where > = ¬⊥, and ¬(>U¬α) and state that α is true now or at some respectively now and at
every time point in the future; F−1 α = >U−1 α and G−1 α = ¬(>U−1 ¬α) express the counterparts for
the past.

Semantically, PLTL-formulas are evaluated over paths, which are infinite sequences π = π(0), π(1),
π(2), . . . of positions with an associated interpretation ν(π(i)) of propositional atomsA, for each i ≥ 0; the
latter is often tacitly omitted. The satisfaction relation π, i |= α is inductively defined as follows:

π, i |= a iff a ∈ ν(π(i)), for a ∈ A,
π, i |= ¬α iff π, i 6|= α,
π, i |= α ∧ β iff π, i |= α and π, i |= β,
π, i |= α ∨ β iff π, i |= α or π, i |= β,
π, i |= α→ β iff π, i 6|= α or π, i |= β,
π, i |= Xα iff π, i+ 1 |= α,
π, i |= αUβ iff π, j |= β for some j ≥ i such that π, k |= α for all i ≤ k < j,
π, i |= X−1 α iff i > 0 and π, i− 1 |= α,
π, i |= αU−1 β iff π, j |= β for some j ≤ i such that π, k |= α for all j < k ≤ j.

Note in particular that ¬X−1> allows us to recognize that we are at the beginning of the path, as π, i |=
¬X−1> holds iff i = 0. Two PLTL formulas α and β are equivalent, if for every path π and integer i ≥ 0,

3To stress symmetry, we write U−1 instead of the usual S.
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it holds that π, i |= α iff π, i |= β, and initially equivalent, if for every path π it holds that π, 0 |= α iff
π, 0 |= β.

It is well-known that PLTL is not more expressive than LTL in the sense that every PLTL formula is ini-
tially equivalent to some LTL-formula (Gabbay, 1987), but the smallest such formula can be exponentially
larger (Markey, 2003).

Comparison to LARS. Comparing LARS to linear temporal logic, we see that the temporal operators are
clearly different, The temporal operators 2 and 3 in LARS have as counterparts the pairs G,G−1 and F,F−1

respectively, which allow one to address all positions in a path; the past time operators are indispensable
for evaluation inside the path. The window operators in LARS have no counterpart in LTL and PLTL, and
similarly the @t′ operator which is known as nominal in hybrid logic and can be traced back to Prior’s work
(Prior, 1967). On the other hand, LARS has no next-time X nor until U or any of their past time counterparts.

The presence of temporal operators in linear time logic formulas affects the computational complexity
of model checking and satisfiability testing in general (cf. (Demri & Schnoebelen, 2002)). In the general
case, for both LTL and PLTL these problems are PSpace-complete, cf. (Sistla & Clarke, 1985), where
satisfiability of a formula α means existence of a path π such that π, 0 |= α, and model checking that
π, 0 |= α for every path π in a given Kripke structure. Thus, at the surface LARS and LTL have the same
computational complexity.

However, in LARS we consider only single path Kripke structures of a given length, for both satisfiabil-
ity and model checking at some given time point t. For both LTL and PLTL, model checking single paths
is feasible in polynomial time,4 and satisfiability is thus easily seen to be NP-complete in this setting. Thus,
there is a considerable complexity gap between LARS and linear time logic.

Nonetheless, it is possible to express (propositional) LARS in linear temporal logic, if we confine to par-
ticular window operators. We show in the next section that this is possible for sliding time-based windows;
that is, we can view this instance of LARS as a fragment of linear time logic. As LTL expresses all and
only the star-free regular languages, i.e., definable by regular expressions without Kleene star, we obtain
that such LARS formulas can a fortiori express only a strict fragment of the regular languages, where a lan-
guage consists of all input streams (representing a finite string) on which the formula evaluates to true. For
example, the language defined by (aa)∗ (strings of a of even length) cannot be expressed. LARS formulas
with arbitrary (polynomial-time evaluable) window operators trivially express by Corollary 4 all and only
the polynomial time recognizable languages.5

5.1.1 Translation of LARS to Linear Temporal Logic

Formally, we represent any LARS structure M = 〈S,W, ∅〉, where S = (T, υ), as a PLTL interpretation
π(M) = π(0), π(1), . . . where for each integer i ≥ 0, ν(π(i)) = {u} if i /∈ T , and ν(π(i)) = υ(i) other-
wise, where u is a special atom which expresses that the position i is not in the stream.

Our translation of LARS formulas to PLTL-formulas for evaluation at a time point t in a stream S =
(T, υ), where T = [`′, u′], is shown in Algorithm 1. The parameters `, u mark the interval [`, u] of the
substream that is currently considered, while `′, u′ marks the original interval. The translation proceeds
recursively, where the temporal modalities 2, 3 and @t′ are effected using the X operator, where we use here
Xk α as a shorthand for the k-fold iteration of X onα; that is, X0 α = α, for k > 0 we have Xk α = XXk−1 α,

4It is known that the problem is NLogSpace-hard but unknown whether it is in NLogSpace nor P-hard in this setting, for both
LTL and PLTL (Laroussinie, Markey, & Schnoebelen, 2002).

5Note that this does not refute Gurevich’s conjecture that there is no query language that captures polynomial time (Gurevich,
1988), as the input stream comes with an ordering.
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Algorithm 1 LARS to PLTL translation
Input: integers `′, `, u, u′ such that 0 ≤ `′ ≤ ` ≤ u ≤ u′, t ∈ [`′, u′], ground LARS formula ϕ
Output: PLTL formula

function PLTL(`′, `, u, u′, t, ϕ)
match ϕ

case atom a =⇒ a

case ¬α =⇒ ¬PLTL(`′, `, u, u′, t, α)

case α ∧ β =⇒ PLTL(`′, `, u, u′, t, α) ∧ PLTL(`′, `, u, u′, t, β)

case α ∨ β =⇒ PLTL(`′, `, u, u′, t, α) ∨ PLTL(`′, `, u, u′, t, β)

case α→ β =⇒ PLTL(`′, `, u, u′, t, α)→ PLTL(`′, `, u, u′, t, β)

case 2α =⇒
∧u−t
k=`−t X

k PLTL(`′, `, u, u′, t+ k, α)

case 3α =⇒
∨u−t
k=`−t X

k PLTL(`′, `, u, u′, t+ k, α)

case @t′ α =⇒ if ` ≤ t′ ≤ u then Xt
′−t PLTL(`′, `, u, u′, t′, α) else ⊥

case �i,jα =⇒ PLTL(`′,max(`, t− i),min(t+ j, u), u′, t, α)

case .α =⇒ PLTL(`′, `′, u′, u′, t, α)
end function

and for k < 0 we have Xk α = X−1 Xk+1 α. For window operators �i,j the current interval has to be
adjusted to at most i steps before resp. j steps after t, while for the reset operator . the original interval is
selected.

Example 22. Consider the formula ϕ = @1q∨p∧�1,33r, and let [`′, u′] = [`, u] = [2, 4] and t = 3. Then
we have

PLTL(2, 2, 4, 4, 3, ϕ) = ⊥ ∨ p ∧ X−1 r ∧ r ∧ X r.

The ⊥ disjunct is due to the fact that position 1 is not in the timeline T = [2, 4]. The conjunction X−1 r ∧
r ∧X r stems from the translation of the window �1,3. Note that X2 r and X3 r are missing since t = 3 is in
distance 1 to the end of the bound u = 4. �

We then can show that the transformation in Algorithm 1 works properly.

Proposition 3. Let M = 〈S,W, ∅〉, where S = (T, υ) and T = [t`, tu], and let t ∈ T and ϕ be a LARS
formula. Then

M,S, t  ϕ iff π(M), t |= PLTL(t`, t`, tu, tu, t, ϕ) iff π(M), 0 |= Xt PLTL(t`, t`, tu, tu, t, ϕ).

By this proposition, we can reduce model checking of a LARS formula ϕ on an input stream S = (T, υ),
to model checking an ad-hoc PLTL formula constructed from ϕ, M and the specific time point t ∈ T ,
on a single path π(M). In particular, we can do this for T = [0, t], i.e., at the end of the input stream.
Furthermore, we can transform the PLTL formula easily to an LTL formula that is initially equivalent.

Unfortunately the transformation PLTL is not practical, as it is exponential in the formula size. However,
it can be exploited by a nondeterministic algorithm for model checking M,S, t  ϕ in ALogSpace (i.e.,
alternating logspace): in the recursive evaluation, conjunction and disjunction evaluated by universal and
existential computation states, respectively, and no further storage than the interval bounds and few (con-
stantly many) auxiliary variables is needed. Since ALogSpace=P, this yields an alternative proof that for
LARS formulas with sliding time-based window operators, model checking is feasible in polynomial time.
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Regarding the expressivity of LARS, we are interested in a transformation PLTL(t′, ϕ) (resp., PLTL(ϕ))
that depends only on t′ and ϕ (resp., ϕ), but not the input stream S. It turns out that such a transformation
exists, but is much more involved.

Theorem 14. For every LARS formula ϕ with sliding time-based windows over atoms A, LTL formulas
PLTL(t′, ϕ) and PLTL(ϕ) overA ∪ {u} are constructible such that for every structureM = 〈S,W, ∅〉, where
S = (T, υ) and T = [0, t], it holds that

(i) M,S, t′  ϕ iff π(M), t′ |= PLTL(t′, ϕ) iff π(M), 0 |= Xt
′

PLTL(t′, ϕ), respectively;

(ii) M,S, t  ϕ iff π(M), 0 |= PLTL(ϕ).

Thus in other words, LARS with sliding time-based windows is a fragment of PLTL (and in fact a
strict fragment, as the until-operator can not be expressed). Furthermore, as PLTL and LTL have the
same expressiveness and can express only regular languages, the considered LARS fragment is thus a strict
fragment of the regular languages.

The proof of Theorem 14 is given in the Appendix. Informally, this result can be established as follows.
If we let dist(n) = Xn ¬u∧Xn+1 u express that the distance to the end of the input stream S is n ≥ 0, then
the formula ∨∞

n=0(dist(n) ∧ PLTL(0, 0, t′+n, t′+n, t′, ϕ)) (11)

would express model checking of ϕ at t′; however, this is not an admissible PLTL-formula.
If each occurrence of a temporal operator 2, 3, and @t′ in ϕ is windowed, i.e., within the scope of some

window �i,j not followed by any ., the transformation PLTL(0, 0, t′+n, t′+n, t′, ϕ) yields for fixed ϕ and
t′ only finitely many different formulas for all n ≥ 0; this is because only a bounded number of distances
u− ` occur, and for some large enough n0, the result of the transformation is identical for all n ≥ n0. That
is, we can obtain PLTL(t′, ϕ) as

n0−1∨
n=0

(dist(n) ∧ PLTL(0, 0, t′+n, t′+n, t′, ϕ)) ∨ (dist≥(n0) ∧ PLTL(0, 0, t′+n0, t
′+n0, t

′, ϕ)), (12)

where dist≥(n) = Xn ¬u expresses that the distance to the end of the input stream is at least n. Non-
windowed occurrences of 2, 3, or @t in ϕ can be naively expressed using infinite formulas similarly
as in (11), which again can be replaced by finite formulas (as only finitely many different constituents
are necessary). Finally, the formula PLTL(ϕ) can be obtained from PLTL(t′, ϕ) likewise using a formula
end(t′) = Xt

′ ¬u ∧ Xt
′+1 u to recognize the end of the input stream.

5.1.2 LARS Programs

If we allow intensional atoms and consider LARS programs, then the expressivity increases and all regular
languages can be expressed. Formally, let PN,N denote the class of propositional LARS programs in which
all windows are sliding time-based windows �i,j . Furthermore, denote for each program P ∈ PN,N with
extensional atoms GE(P ) by LE(P ) the set of all input (data) streams S = (T, υ) over GE , where T =
[0, t], such that P has some answer stream for S at t. Naturally, any stream S over GE encodes a string
υ(0)υ(1) · · · υ(t) over the alphabet 2G

E
. We then establish:

Theorem 15. PN,N captures the class of regular languages modulo the empty string ε, that is
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(i) for each P ∈ PN,N and extensional atoms GE(P ), the set LE(P ), viewed as set of strings over Σ =

2G
E(P ), is a regular language;6 and

(ii) for each regular language L over alphabet Σ such that ε /∈ L, there exists some program P ∈ PN,N
with extensional atoms GE(P ) such thatL = LE(P ).7 Furthermore, this holds even if only the window
�1,0 is used and the @-operator and . do not occur in PL.

Informally, (i) holds as we can express answer stream existence for a program in PN,N over finite input
streams S by a formula in monadic second-order logic (MSO); as the MSO definable languages coincide
with the regular languages by the famous Büchi-Elgot-Trakhtenbrot Theorem (Büchi, 1960b, 1960a; Elgot,
1961; Trakhtenbrot, 1961), propositional LARS programs can express only regular languages. Conversely,
(ii) holds as we can encode finite automata A in propositional LARS programs PA such that answer stream
existence for an input stream S amounts to acceptance of S by A. Informally, the answer streams encode
accepting runs; for that, it is crucial that intensional (auxiliary) atoms are available, to store the states of the
automaton during a run. Particularly worth noting is that PA can not use an ordering on the input elements,
as binary predicates are not available.

The availability of intensional atoms for capturing the regular languages is essential, as without such
atoms the expressiveness of the LARS programs PN,N coincides with the one of respective LARS formulas
(i.e., with sliding time-based windows �i,j). By the result of Theorem 14, such formulas are subsumed by
the fragment of PLTL in which only the operators X,G and their past time versions X−1,G−1 are available.
That fragment amounts to the 2-variable fragment of FO-logic on strings (Etessami, Vardi, & Wilke, 2002)
and is less expressive than full FO-logic on strings, which in turn is as expressive as full LTL and PLTL
and captures the star-free regular languages.

If we abandon extensional atoms and consider definability in terms of models, i.e., answer streams of a
LARS program represent strings over an alphabet Σ = 2A (similarly as in part (i) of Theorem 15) where
A = GI(P ) = G(P ), then PN,N and the LARS �i,j-formulas have incomparable expressiveness. However,
if as in part (ii) of Theorem 15, the letters σ of Σ are singleton interpretations {σ} ⊆ A, then PN,N is
strictly more expressive than the class of LARS �i,j-formulas. In both settings, LARS programs can define
languages that are not expressible in LTL. More details are given in the Appendix.

We remark that the translation PLTL(ϕ) from above can be exploited to capture answer streams for
restricted classes of LARS programs, in the sense that the existence of an answer stream for an input (data)
stream S at its end t amounts to the existence of an equilibrium model of a formula PLTL(ϕ, S, t), which
extends PLTL(ϕ) with the stream data. Equilibrium models of an LTL formula ϕ are particular models that
satisfy a stability condition (Cabalar & Vega, 2007; Aguado, Cabalar, Diéguez, Pérez, & Vidal, 2013); they
lift the respective notion for classical formulas, which captures the answer sets of ordinary logic programs
(Pearce, 2006), to LTL. The restricted class of LARS programs can be singled out via the class LARSHT

of programs in (Beck et al., 2016), whose answer streams correspond as shown there to its equilibrium
models, where the notion is naturally lifted from single interpretations to streams; we leave this for future
work.

We close this section with noting that the expressiveness of LARS programs with sliding time-based
windows increases if we move beyond propositional programs; by the results in Section 4 and well-known
results for disjunctive Datalog (Eiter et al., 1997), it can be seen that they capture the class of languages
with complexity in Σp

2; however, we omit here further consideration.

6This can be restricted to strings over GE(P ), by neglecting others resp. requesting that P only accepts respective streams.
7Here σ ∈ Σ is identified with the singleton {σ}. As streams are non-void, ε can not be accommodated in this string represen-

tation. If S = ∅ would be allowed, ε would be recognized e.g. by 2⊥ and any regular L is expressible.
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5.2 Continuous Query Language (CQL)

A particularly influential work in stream processing has been the Stanford Stream Data Manager (STREAM)
(Arasu et al., 2003a) and its Continuous Query Language (CQL) (Arasu et al., 2003b, 2006). The central
idea is to reuse existing features from SQL and extend it with streams as additional data sources. To this end,
different window operators are used to obtain recent snapshots of data, which are then essentially viewed as
database relations.

Example 23. Following up on request (i) from Example 1, we state a CQL query for expected arrival times
of trams where no traffic jam has been reported at their last station within the last 20 minutes. Recall that
the relation plan(L,X, Y,D) records for line L the scheduled travel time D between station X and Y .

SELECT TRAM.ID, PLAN.Y, TY

FROM TRAM[PARTITION BY ID ROWS 1], LINE, PLAN

WHERE TRAM.ID=LINE.ID AND LINE.L=PLAN.L AND

TRAM.ST=PLAN.X AND TY=TRAM.T+PLAN.D AND

NOT EXISTS

(SELECT * FROM JAM[RANGE 20]

WHERE JAM.ST=TRAM.ST)

Note that streams TRAM and JAM have designated timestamp fields “T”, i.e., explicit attributes that state the
time when the tuple occurred in the stream. �

In CQL, a stream is viewed as bag of elements of form 〈c, t〉, where c is a tuple (which we can view as
vector of constants) and t a timestamp; a relation maps timestamps to bags of tuples. To translate between
these concepts, the operational semantics of CQL builds on three operators:

• Stream-to-relation (S2R) operators apply window functions to the input stream to create a relation for
recent tuples, i.e., those in the selected window.

• Relation-to-relation (R2R) operators can manipulate relations similarly as in relational algebra, re-
spectively SQL.

• Relation-to-stream (R2S) translates back a relation into a stream for the output of continuous queries.

Our focus here is on the first two operators, the R2S operator only concerns how output is generated but
does not influence the query semantics as such. The S2R operator allows us to consider streaming tuples as
sets of atoms. The semantics of CQL thus essentially reduces to the R2R operator, once recent snapshots
of streaming data have been selected by S2R. Due to this, we show that LARS programs capture CQL by
exploiting two well-known translations: from SQL to relational algebra (Dadashzadeh & Stemple, 1990)
and from relational algebra to Datalog (Garcia-Molina, Ullman, & Widom, 2009). Let us call the former
translation RelAlg and the latter Dat .

The idea is to have a 3-step process to obtain a Datalog program for a CQL query q:

(1) replace in FROM clauses the input sources (i.e., streams with window expressions) by virtual table
names due to the renaming function rel as defined in Table 3. By replacing in CQL query q each
occurrence of an input stream s by a relation rel(s), we obtain a SQL query rel(q).

(2) Apply RelAlg on this query to obtain a relational algebra expression.

(3) Apply Dat on the expression to obtain a Datalog program with a designated predicate q̂ that reflects
the resulting tuples.
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Input source s in FROM clause Relation rel(s) LARS window fn. w(s)

S[RANGE L] s range L τL

S[RANGE L SLIDE D] s range L slide D τL,0,D

S[RANGE UNBOUNDED] s range unb τ∞

S[NOW] s range 0 τ0

S[ROWS N] s rows N #N

S[PARTITION BY X1,...,Xk ROWS N] s part X1 . . . Xk rows N pidx,n

Table 3: Translation function rel and LARS window w(s)

More formally, we get for a CQL query q a Datalog program ∆D(q) = Dat(RelAlg(rel(q))). Any static
relation (table) B can be naturally encoded as

∆(B) := {b(c) | c is a tuple in B}, (13)

where the lower case b version of relation name B serves as predicate name for atoms; tuples c can be seen
as vectors of constants.

We observe that LARS allows us to model the S2R operator. A snapshot of a stream S amounts to (i)
applying an according window operator and then (ii) abstracting away time. The second step amounts to
existential quantification over time, i.e., formulas of form �w3ϕ. Table 3 lists the LARS window functions
corresponding to those in CQL. We thus can derive each snapshot relation rel(s) for a CQL input source s
(as listed in the table) using a snapshot rule of form

∆L(s) := rel(s)(V)← �w(s)3s(V), (14)

where the lower case s version of stream name S serves as predicate name, and V is the list of variables
corresponding to the attributes of tuples in S. We refer to static relations and input streams (with window
expressions) uniformly as input sources. We thus obtain a LARS program

∆L(q) = ∆D(q) ∪ {∆L(s) | s is an input source in q }.

For a set Q of queries, we simply take respective unions, i.e., ∆x(Q) =
⋃
q∈Q ∆x(q), x ∈ {L,D}.8

Example 24. We give a Datalog translation ∆D(q) of the CQL query q in Example 23. (Note that due to
the exact translation from SQL and potential optimizations the intermediate relational algebra representation
might vary and thus the specific set of derived Datalog rules. The employed translation is detailed in the
Appendix.) Let T = ID1,ST 1, T1; L = ID2, L2; P = L3, X3, Y3, D3; J = ST 4, T4 (subscripts for
variables serve to reflect their origin in the same schema in a readable way).

q0(T,L,P) ← tram part ID rows 1 (T), line(L), plan(P).

q1(T,L,P) ← q0(T,L,P), ST1 = X3, ID1 = ID2, L2 = L3.

q2(T,J) ← tram part ID rows 1 (T), jam range 20 (J).

q12(T,L,P,J) ← q1(T,L,P), q2(T,J).

q′12(T,L,P) ← q12(T,L,P,J).

q(ID1, Y3, TY ) ← q1(T,L,P),¬q′12(T,L,P), TY = T1 +D3.

8Note that LARS formulas of form �w3ϕ could by themselves be viewed as relation names and interpreted as Datalog pro-
grams.
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Informally, q0 captures the cross product of relations LINE and PLAN as given in the FROM-clause, and the re-
lation corresponding to the window on stream TRAM. The selection based on the statement TRAM.ID=LINE.ID
AND LINE.L=PLAN.L in the WHERE-clause is captured in predicate q1. The cross product of recent tram ap-
pearances at stations and traffic jams is then reflected in q2 and the join with q1 yields q12, which thus
captures tram appearances that shall not be considered. In order to remove these, jam information is pro-
jected away to obtain predicate q′12. Finally, those variable groundings for q1 are reported that are not
groundings for q′12, and in addition the calculated arrival time TY which adds the planned travel time D3

to occurrence time T1 of the last station. (Note that we explicitly model arrival times in tuples. Thus, they
remain accessible after S2R, resp. in the Datalog and LARS encodings.)

Using snapshot rules of form (14), we obtain a LARS program ∆L(q) by adding the following rules
(idx, n are from Example 16):

tram part ID rows 1 (T) ← �idx,n3tram(T).

jam range 20 (J) ← �203jam(J). �

To establish the correspondence between the result of a set Q of CQL queries and its LARS transla-
tion ∆L(Q), we first build a conversion of the input streams inQ to a LARS data stream. (Recall that LARS
considers only a single stream which can be virtually split, e.g., by partition-based windows.) Without loss
of generality, we assume that Q is evaluated on static relations B1, . . . , Bm and input streams S1, . . . , Sn,
and that any stream is only used in one place in the FROM clause in a single query (we can always duplicate
streams and rename them). We consider the union of these input streams, given by

S = {〈cij , tij〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ mi},

where the element 〈cij , tij〉 represents the tuple cij that occurs at the jth position at time tij in stream Si
(with mi elements). We use the (lower case) name si of CQL stream Si as predicate symbol of according
atoms and thus obtain the LARS data stream by

∆(S) = (T, υ) such that
T = [min{tij},max{tij}] and

υ(t) = {si(cij) | tij = t} for all t ∈ T ;

where 1 ≤ i ≤ n and 1 ≤ j ≤ mi. Similarly, we define for B = B1, . . . , Bm the atom set ∆(B) =
⋃m
i=1{bi(c) |

c ∈ Bi}. Let cqlRes(q, t) denote the set of resulting tuples of CQL query q at time t and let cqlRes(Q, t) =⋃
q∈Q cqlRes(q, t). The following theorem shows that the translation ∆L faithfully captures CQL. For a set

A of atoms and a set Q of CQL queries let A|Q denote the set of all tuples c such that q̂(c) ∈ A for some
query q ∈ Q (recall that q̂ is the “output” predicate of the Datalog transformation of q).

Theorem 16. Let Q be a set of CQL queries to be evaluated on input streams S = S1, . . . , Sn and back-
ground relations B = B1, . . . , Bm, P = ∆L(Q), and t a time point. Moreover, let M = 〈I,W,∆(B)〉 such
that W is implicit by Table 3 and windows mentioned in Q. Then,

(i) If I = (T, υ) is an answer stream of P for ∆(S) at t, then υ(t)|Q = cqlRes(Q, t).

(ii) There exists an answer stream I = (T, υ) of P for ∆(S) at t such that υ(t)|Q = cqlRes(Q, t).

Intuitively, (i) establishes the soundness and (ii) the completeness of the translation ∆L.
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Proof (Sketch). Consider a set Q of CQL queries and its translations ∆D(Q) to Datalog and ∆L(Q) to
LARS, and moreover the data stream ∆(S) corresponding to CQL input stream S. First, we observe that the
Datalog program ∆D(Q) is an acyclic program and thus has as well-known a single answer set. Using the
snapshot of the streaming data (i.e., the result of the S2R operator) as input, we thus get by the correctness
from RelAlg and Dat that the result of Q is captured by the answer set of ∆D(Q). As noted above, the
result of the S2R operator on an input source s amounts to abstracting away the temporal information. This
step is carried out in LARS by existential temporal quantification with 3 in the according window as listed
in Table 3. We observe that snapshot rules, i.e. ∆L(Q) \ ∆D(Q), add a stratified layer to ∆D(Q) and
faithfully derive the relations rel(s) as follows. Provided encoding ∆(S) (and background data ∆(B) for
static relations B), rel(s)(c) will be derived iff c is a tuple in the snapshot of input source s in Q: any
ground snapshot rule of form rel(s)(c) ← �w(s)3s(c) must be satisfied when the formula �w(s)3s(c) is
satisfied, thus the rule head rel(s)(c) is concluded if the tuple c is contained in the snapshot; the only-if part
is ensured by minimality of answer streams and the fact that relation names do not occur elsewhere as rule
heads in the translation. From this also follows that the interpretation of these predicates must coincide in
∆D(Q) and ∆L(Q); the latter contains no further rules not contained in ∆D(Q). It thus follows that the
answer set of ∆D(Q) corresponds to the answer stream of ∆L(Q). That is to say, given the answer stream
I = (T, υ) of ∆L(Q) for ∆(S) at time t, q̂(c) ∈ υ(t) iff c ∈ cqlRes(Q, t). 2

More details can be found in the Appendix.

5.3 Semantic Web: C-SPARQL and CQELS

Among research initiatives for the Semantic Web, RDF Stream Processing (RSP) emerged to address the
question of querying heterogeneous streams. The RSP community is interested in extending SPARQL
for streams in a similar way as CQL builds on SQL. In particular, C-SPARQL (Barbieri et al., 2010) and
CQELS (Phuoc et al., 2011) employ an operational semantics that is based on the CQL approach of reducing
stream reasoning to relational processing between a pre-processing of input streams and a post-processing
towards output streams.

In (Dao-Tran et al., 2015a, 2015b) we investigated these two query languages for RDF data. We studied
their difference which arises mainly due to the different execution modes. While C-SPARQL is pull-based,
i.e., repeatedly returning a query result after a fixed temporal interval, CQELS is push-based, i.e., reporting
results after every new input. We presented the comparative analysis by first formalizing these execution
modes semantically for LARS programs. Then, we gave translations for the two RSP languages to LARS
in a similar way as for CQL.

One difference between CQL and the SPARQL extensions are due to the fact that RDF graphs (i.e.,
sets of triples) do not come with a schema. While for CQL the integration of multiple input sources (tables
and streams) is clear, there are different ways to integrate different input streams that arrive in RDF format.
While C-SPARQL merges the relational snapshots into one graph (by stating them in the FROM-part of the
query), CQELS provides explicit access to each input stream (in the WHERE clause of the query).

The central idea of capturing the push- and pull-based execution modes in LARS is to introduce an
auxiliary atom c to rule bodies to control potential rule firing. The push-based mode will infer c whenever
any atom holds in window �0 that contains only the current time point. On the other hand, the encoding
of pull-based execution amounts to testing for �0@T> whether current time T is a multiple of the query
interval; only in this case, c shall hold.

Furthermore, window expressions of C-SPARQL and CQELS can easily be encoded as window oper-
ators in LARS. Note that LARS allows for using any kind of computable window function that does not
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need further information than the input stream and the query time point. In fact, the time-based and tuple-
based window functions as presented in Sections 2.3 and 2.4 correspond to those used in considered RSP
languages.

Finally, the translation from RSP queries to LARS is based on an existing reduction from SPARQL to
Datalog rules (Polleres, 2007). For C-SPARQL, it suffices to use a uniform representation of triples t(s, p, o)
that are available as input i(s, p, o, x) in stream source x at some time point in the considered snapshot. Thus,
the encoding essentially takes the form t(s, p, o) ← �w3i(s, p, o, x), where �w is the according window
translation. For CQELS, we additionally have to disambiguate the stream source due to the so-called stream
graph pattern as stated in the original WHERE clause.

Based on these translations, questions on the semantics of C-SPARQL and CQELS can then be made
precise; in particular, when syntactically similar queries indeed produce the same results. In (Dao-Tran
et al., 2015a) we formalized a notion of agreement and gave sufficient conditions for agreement for sliding
time-based windows (under some restrictions). Our results formally reflect the drastic effect of execution
modes on the query results from a semantic perspective.

5.4 Complex Event Processing: ETALIS

Related to stream processing is complex event processing (CEP), where one deals with the derivation of
complex events (that typically span over temporal intervals) based on atomic events (that occur at time
points). We briefly study the relation between LARS and the CEP language ETALIS (Anicic et al., 2010).
This allows us to draw a line between stream reasoning and CEP by means of LARS.

In ETALIS, an event stream ε associates atomic events (represented as ground atoms) with time points,
i.e., non-negative rational numbers. For comparability with LARS, we consider here only natural numbers.
confine here to natural numbers. Complex events can be described by rules due to so-called event patterns,
which resemble Allen’s (1983) interval relations. An interpretation I is a function that maps atoms to sets
of pairs 〈t1, t2〉 ∈ N× N representing intervals [t1, t2]. Let r = a ← pt be a rule, where a is an atom and
pt an event pattern. Then, interpretation I satisfies r if all intervals assigned to pt are also assigned to a.
Given an event stream ε and rule base R, an interpretation I is model for ε,R, if I (i) maps each atomic
event a to the interval 〈t, t〉 if a occurs in ε at time point t, and (ii) satisfies each rule r ∈ R. The semantics
of ETALIS is then defined in terms of minimal models,9 which are always unique due to the definition of
event patterns. More precisely, ETALIS employs a monotonic semantics computable by a straightforward
fixed-point iteration.

Intervals in LARS. In contrast to ETALIS, the semantics of LARS is based on time points. Nevertheless,
we can represent intervals in LARS and thus capture the ETALIS event patterns under some restrictions.
Consider a window function w[`,u] that selects the (maximal) substream of the interval [`, u]. Given a
formula α, we define the abbreviations

J`, uKα := �w[`,u]2α ,

〈〈`, u〉〉α := J`, uKα ∧ @`−1¬α ∧ @u+1¬α .

That is to say, formula J`, uKα holds iff α holds at every time point in the interval [`, u], regardless of the
query time. Similarly, 〈〈`, u〉〉α holds iff [`, u] is a maximal interval in which α always holds.

9Where model comparability is defined as I ≤ J ⇔ ∃q ∈ R+
0 ∀a ∀〈t, t′〉 ∈ I(a) : t′ − t ≤ q ⇒ 〈t, t′〉 ∈ J (a); that is,

inclusion of intervals is relative to some arbitrary interval length q.
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Example 25. Consider two events, x and y, which hold in the intervals 〈t1, t2〉 and 〈t3, t4〉, respectively,
and assume t2 < t3. An ETALIS rule r z ← x SEQ y thus assigns the interval 〈t1, t4〉 to z. With the above
syntactic abbreviations, we may express r in LARS as

Jt1, t4Kz ← 〈〈t1, t2〉〉x, 〈〈t3, t4〉〉y, t2 < t3.

That is, if [t1, t2] is a maximal interval in which x holds, and [t3, t4], where t2 < t3, is a maximal interval in
which y holds, then z must hold at every time point in [t1, t4]. �

However, this straightforward encoding does not suffice to express ETALIS in LARS. The essential problem
arises from overlapping intervals (for the same event/formula). LARS assigns atoms to a single timeline by
an evaluation function υ : T → 2A. Unless an encoding makes use of time points in atoms, we can encode
intervals only by assigning atoms to consecutive time points. Adjacent or overlapping intervals for the same
atom cannot be distinguished, they all amount to a merged view of them. For instance, consider an event e
that is assigned to 〈1, 4〉 and 〈3, 5〉 in ETALIS. By naively constructing a LARS interpretation υ, we would
assign υ(t) = {e}, for t = 1, . . . , 4 and t = 3, . . . , 5, and then only be able to read off a merged interval
from 1 to 5. There is no way to distinguish the intervals [t1, t4] and [t3, t5] without explicitly encoding the
boundaries of these atoms as terms in atoms such that they remain distinguishable.

For the sake of illustrating the capabilities of LARS regarding intervals, we now consider separable
ETALIS interpretations, i.e., where such overlaps do not occur. If the minimal model of an event stream ε
and a rule base R is separable, we also call the pair (ε,R) separable. In this case, the approach of Exam-
ple 25 allows us to faithfully translate positive ETALIS rule bases. The notion of minimality in LARS is
based on set inclusion, whereas ETALIS defines minimality in terms of minimal length and the supported-
ness of inferred intervals (see Footnote 9). Notably, ETALIS defines a special form of negation (i.e., the
NOT pattern) which ensures that a fixpoint iteration can be done. Using a natural translation for negation
would give multiple LARS models in general. However, when confining to positive ETALIS programs with
separable minimal models, a straightforward translation as indicated in Example 25 captures the ETALIS
semantics.

The suggested intuitive approach is thus less expressive than ETALIS, where an atom can be assigned
to overlapping intervals. On the other hand, the canonical minimal model of the ETALIS semantics can
be computed by fixpoint-iteration for intervals of increasing size. Consequently, by explicitly encoding
intervals 〈t1, t2〉 into atoms that contain t1 and t2 as terms, the bottom-up evaluation of such models can be
emulated with LARS (as in Answer Set Programming). It remains as an interesting topic to find a suitable
extension of LARS for nonmonotonic complex event processing (with multiple models) that has an interval-
based evaluation function υ : T × T → 2A.

6 Discussion

After having discussed relationships of LARS with selected formalisms, we now mention in Section 6.1
further research that is based directly on LARS. In Section 6.2 we will discuss the broader context of related
work.

6.1 Further Work based on LARS

We now briefly discuss further work that is devoted to or based on LARS.
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6.1.1 Theoretical Foundations

We first review theoretical work on LARS regarding program equivalence and techniques for incremental
model update.

Equivalence notions. Towards optimizations of LARS programs, Beck et al. (2016) studied several no-
tions of equivalence. They extended the notions of strong equivalence (SE) (Lifschitz et al., 2001), uniform
equivalence (UE) (Eiter & Fink, 2003) and relativized uniform equivalence (RUE) (Woltran, 2004) from
ASP to LARS and introduced data equivalence for streams. Based on a logic called Bi-LARS they captured
the semantics of a large fragment of LARS, including plain LARS, by lifting the model-theoretic charac-
terizations of SE/UE/RUE for ASP. Moreover, Beck et al. studied a special form of monotone windows, a
class which includes time-based windows. Restricting to these allows for a variant of Bi-LARS that extends
the logic of Here-and-There (Heyting, 1930), thus establishing a link to equilibrium logic (Pearce, 2006;
Lifschitz et al., 2001) for the considered class of LARS programs. A final complexity analysis revealed that
checking the considered equivalence relations is typically not worse than for ordinary ASP.

Incremental reasoning: answer update. Of special interest in stream reasoning is model update and
incremental evaluation, in particular, when dealing with expressive languages such as LARS. To this end,
we first extended in (Beck et al., 2015) Doyle’s (1979) seminal justification-based truth maintenance system
(JTMS) for a LARS fragment that was later called plain LARS. It extends normal logic rules of form

α← β1, . . . , βn,¬βn+1, . . . ,¬βm
as follows: the rule head α can be an atom a ∈ A or a so-called @-atom of form @ta (t ∈ N); and body
elements βi (1 ≤ i ≤ m) are extended atoms, given by the grammar

a | @ta | �@ta | �3a | �2a .

Doyle’s JTMS deals with non-monotonic reasoning by updating a model in the light of new evidence.
Technically, this change amounts to the addition of a new rule. Based on (partial) correspondence with
stable model semantics (Elkan, 1990), we extended this maintenance technique for plain LARS. First, we
extended the update mechanism for the time dimension which is included in the label of atoms. Secondly,
according central JTMS data structures such as support and consequences have been adjusted accordingly.

In particular, the focus is on the concept of stream-stratified programs. In analogy to stratified negation,
stream-stratified programs allow to split up a program into layers based on occurrences of window oper-
ators. This assumption aids efficient evaluation and is practical, since one can assume an acyclic flow of
information in many applications. There, the output of any stream stratum serves as input for the next higher
stratum. Notably, our approach accounts for a generic class of window operators as proposed by LARS as
formal language.

6.1.2 Prototype implementations

Fragments of LARS have been implemented in several experimental prototypes (Beck et al., 2016, 2017;
Bazoobandi et al., 2017) which are based on different realization principles.

LARS via ASP with external atoms. For a pilot application of LARS in multi-media data management
discussed in Section 6.1.3, a specific fragment of LARS that amounts to plain LARS was implemented in
dlvhex (Eiter et al., 2014, 2016), which is a solver for an extension of ASP with external atoms. The latter
allow for an API style access to external information, which can be utilized to perform computations outside
an ASP program. Specifically, sliding time-based windows have been realized as external atoms that access
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the data stream viewed as an external object. While conceptually simple, this implementation is not geared
towards performance and specifically lacks incremental reasoning techniques.

Ticker: incremental reasoning by program adjustment. More recently, Beck et al. (2017) developed
another approach for practical, fully incremental reasoning, i.e., for sliding time- and tuple-based windows.
While this work also exploits JTMS as specific update technique, it explores more generally the idea of
updating a model by incrementally adjusting an encoding of a plain LARS program. Due to the corre-
spondence with ASP, JTMS is a suitable mechanism for the show case. (In the absence of constraints and
so-called odd loops JTMS computes and updates answer sets.)

Beck et al. considered two encodings: the first one is static and replaces window atoms by auxiliary
atoms that are derived based on additional rules. For instance, the LARS rule

b(X)← �23a(X)

can be naturally translated into the following ASP rules, provided an additional predicate now(t) is given to
model the query time t.

r0 : b(X) ← w(X)
r1 : w(X) ← now(N), a@(X,N)
r2 : w(X) ← now(N), a@(X,N − 1)
r3 : w(X) ← now(N), a@(X,N − 2)

The idea similarly carries over for other operators, some of which are more subtle. Assuming that we remove
the auxiliary predicate now and directly deal with partial groundings, we get, e.g., at time t = 7:

r′1 : w(X) ← a@(X, 7)
r′2 : w(X) ← a@(X, 6)
r′3 : w(X) ← a@(X, 5)

We observe that the rules r′1, r
′
2, r
′
3 cover the timeline [5, 7]. If we now move to time 8, i.e. the timeline

[6, 8], we can keep any groundings for time points 6 and 7; only groundings for rule r′3 need to be removed,
and suitable rules for time 8 have to be added. Thus, based on the window information and the development
of the stream (in terms of time, respectively new atoms), new rules are added and some rules expire. For the
latter, we can efficiently determine when a rule expires.

Based on this principle, we have built a reasoning engine called Ticker10 that can be run in two evaluation
modes. The first one exploits the static encoding and calls Clingo (Gebser et al., 2014) for ASP-based
evaluation. From a semantic perspective, this mode is sufficient for use cases that always have a unique
solution, i.e., a single model. The second mode uses the incremental technique and carries out the program
update (and thus the model update) by our own implementation and extension of JTMS that also allows for
removing rules. In case of multiple potential solutions (answer streams), the system will compute one model
at random and then maintain it due to the operational semantics of JTMS. Our experimental evaluations
indicate a clear performance benefit of incremental evaluation. For a detailed, formal review of the employed
JTMS techniques we refer to (Beck, 2017).

Laser: high performance incremental reasoning. In (Bazoobandi et al., 2017) non-ground plain LARS
with sliding windows was then considered with the aim of providing highly efficient model update. For
applications that do not need multiple model reasoning, one can exploit additional structural information that

10Available at https://github.com/hbeck/ticker
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arises from stratification. Hence, this work focused on positive and stratified programs, i.e., both stream-
stratification and stratified negation. Existing semi-naive evaluation techniques as in Datalog (Abiteboul
et al., 1995) have been extended to deal with the temporal dimension of LARS. In particular, for time-
based windows, substitutions for non-ground formulas are annotated with two time markers that express
the interval during which the according ground formula is guaranteed to hold. As long as the evaluation
time is included in such an interval, the substitution can be retained. Thus, when time progresses, parts of
the model may be carried over instead of being recomputed. Moreover, further annotations (i.e. guarantees)
might be added incrementally for existing substitutions. In this way, the update process may partially reduce
to updating annotations of existing derivations. On the other hand, substitutions may expire and are then
removed efficiently due to the lookup of the respective time marker. The approach works similarly for
tuple-based windows, under analogous annotations that refer to the global tuple count.

This research resulted in a prototype engine called Laser11 that was evaluated empirically and compared
against C-SPARQL (Barbieri et al., 2010), CQELS (Phuoc et al., 2011) and Ticker (using Clingo mode),
all of which have been outperformed significantly. We note that Ticker and Laser have been developed
in parallel and Ticker’s incremental evaluation mode was not available for evaluation during the empirical
study of Laser. However, the established results indicate that Laser will also be significantly faster than the
incremental approach of Ticker.

We thus have two incremental reasoning engines for plain LARS using sliding (time-based and tuple-
based) windows: Ticker may be used for problems with multiple models and Laser exploits the restriction
to stratified negation to obtain high performance.

6.1.3 Applications of LARS

We now give examples how LARS may be used practically as modelling language, respectively as formal
tool in theoretical work.

Cache Management in Content-Centric Networking. Beck et al. (2016, 2017) presented a show case ap-
plication of stream reasoning with LARS. Research in the area of Content-Centric Networking (CCN) deals
with future internet architectures for more efficient multimedia distribution. Clients issue interest packets,
and routers return or need to retrieve data packets based on the content name. A router’s caching strategy
then decides which data item to store locally, and when to delete it. In our work, we investigated the use
of a LARS-based decision component in a complex simulation environment for such an architecture. This
implementation uses a specific fragment of LARS (which amounts to plain LARS) and was implemented
in dlvhex (Eiter et al., 2014, 2016). This work tries to convey two key messages. First, switching caching
strategies dynamically based on patterns of user demand leads to better cache hit ratios and a smaller average
number of intermediate router forwards (hops) for content retrieval; and second, that the fully declarative
control unit based on LARS is easier to maintain than imperative alternatives.

Streaming multi-context systems. Nonmonotonic Multi-Context Systems (MCS) (Brewka & Eiter, 2007)
is a formal framework for interlinking knowledge bases, called contexts, via so called bridge rules for
information exchange. In (Dao-Tran & Eiter, 2017), the latter have been generalized to streaming bridge
rules, which utilize a fragment of LARS for processing of data streams that are dynamically generated by
contexts. A semantics of streaming MCS was presented that lifts the key notion of (static) MCS equilibrium
to an asynchronous execution model; it is the first semantics of this kind.

11Available at https://github.com/karmaresearch/laser
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6.2 Related Work

In the Semantic Web area, the SPARQL language was extended to queries on streams of RDF triples. Re-
spective engines such as CQELS (Phuoc et al., 2011) and C-SPARQL (Barbieri et al., 2010), as mentioned
in Section 5.3, or SPARQLStream (Calbimonte et al., 2010) follow up on the snapshot semantics of CQL
(Arasu et al., 2003b, 2006) (cf. Section 5.2). Moreover, EP-SPARQL (Anicic et al., 2011), transfers event
processing methods of ETALIS (Anicic et al., 2010) (cf. Section 5.4) to semantic web reasoning. It adds
to the SPARQL syntax binary operators SEQ, EQUALS, OPTIONALSEQ and EQUALSOPTIONAL to combine
query expressions (i.e., so-called graph patterns) similarly as UNION and OPTIONAL in SPARQL. These
constructs introduce joins that depend on temporal information. For instance, given patterns P1 and P2,
P1 SEQ P2 results in a join of P1 and P2 if they occur in a SEQ relation as in ETALIS, i.e., the instantiation
of P1 must occur strictly before that of P2. Moreover, functions are provided for expressing conditions on
the timestamps of the start time and the end time, and the duration of triples in the FILTER clause. The
execution model exploits event-driven backward chaining rules as in ETALIS, couched in a Prolog imple-
mentation.

While the above SPARQL extensions provide a variety of ideas to lift static querying techniques for
streams, they face difficulties with incorporating more expressive reasoning features as typically studied in
Knowledge Representation and Reasoning (KR&R) like nonmonotonicity, default reasoning, or multiple
possible solutions. Such features are important to deal with missing or incomplete data, respectively to
enumerate alternative solutions and choices. Moreover, as observed by Dindar et al. (2013), conceptually
identical queries may produce different results on different engines. This may be due to differences that
either arise from potential flaws in implementations, but also due to (correctly implemented) different se-
mantics. Comparisons between different approaches are confined to experimental analysis (Phuoc et al.,
2012a) or informal examination on specific examples. For the user it is important to know the exact capa-
bilities and semantic behaviors of given methods for systematic analysis and comparison.

In KR&R, first attempts towards expressive stream reasoning have been recently carried out and reveal
many open problems. The plain approach of Do et al. (2011) periodically calls the dlvhex solver (Eiter et al.,
2006) without incremental reasoning and thus cannot handle heavy data load. Another logic-based approach
is Streamlog (Zaniolo, 2012) which extends Datalog for stream reasoning, motivated by a perceived lack of
logical foundations of data stream management systems. By introducing so-called sequential programs that
have syntactic restrictions on special temporal rules, Streamlog defines a non-blocking negation that can be
used in recursive rules in a stream setting. Sequential programs are locally stratified and thus have unique
models that can be computed efficiently by a fixpoint computation. The temporal predicates of Streamlog
use the time point as first argument, i.e., an atom p(t, x1, . . . , xn) corresponds to @t p(x1, . . . , xn) in LARS,
where time is explicit; respectively orthogonal to logical truth.

Reasoning over streams has also been considered in ontology-based data access (OBDA). Ontology
Stream Management Systems (OSMS), as introduced in (Ren & Pan, 2011), consider the use of Truth
Maintenance Systems to deal with large volumes of data in EL++ reasoning. Streams of ontologies are
also considered in the query language STARQL (Özcep et al., 2015) for query answering over streams.
Neither Streamlog nor OSMS employ window mechanisms; STARQL on the other hand provides time-
based windows.

Multiple works on the ASP solver Clingo have addressed the issue of data or program change. Incre-
mental ASP (Gebser et al., 2008) introduced new techniques for incremental grounding and solving based
on the module theory in (Oikarinen & Janhunen, 2006) which allows for composing programs with explicit
(distinct) input and output atoms. An incremental program is a triple (B,P,Q) consisting of three program
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parts: B describes static knowledge; P and Q are slices that depend on a parameter t. At each step t, the
program grows by a new set P [t], while Q[t] is considered only temporarily at t. Relying on according
composition of modules, model computation can then be carried out incrementally. The work resulted in the
solver iClingo, which uses declarations #base, #cumulative t, and #volatile t to delineate program
parts B, P , and Q from above, respectively. In a step k, the parameter (variable) t in a rule of program
part P or Q is then instantiated with k. All other variables can be grounded only once, i.e., these instantia-
tions must be derivable from static knowledge. While incremental ASP focuses on stepwise computation of
models, reactive ASP (Gebser et al., 2011) targets real-time systems by providing additional means to add
new data online. On top of incremental programs and its update mechanism, reactive programs support an
asynchronous control via so-called online progressions of external events and inquiries which themselves
are programs. In essence, at each step, external information can be incorporated to ground new rules dynam-
ically. The resulting solver oClingo uses the additional declaration #external to introduce atoms that can
be fed into the system in a streaming fashion. However, while reactive ASP provides incremental solving
features for streaming data, it lacks a window mechanism. More precisely, the dynamic program parts P
(which is cumulative) and Q (which concerns only the current step) do not fit the conceptual approach of
windows which express the relevance of information relative to an interval of steps. With the aim of provid-
ing such a window mechanism for stream reasoning, time-decaying logic programs (Gebser et al., 2012)
were defined as triples (B,P, {Q1, . . . , Qm}), where the instantiation of each program part Qi expires af-
ter a specified life span of ni steps (ni ∈ N ∪ {∞}). Thus, each program part Qi resembles functionality
of a sliding window of length ni. To incorporate this facility, oClingo’s additional declaration of form
#volatile t : n states that subsequent rules that are parameterized with variable t are discarded after n
steps.

Ideas from incremental ASP, reactive ASP and time-decaying logic programs have been improved con-
tinuously and are now subsumed in the current version 5 of Clingo (Gebser et al., 2017). Its multi-shot
solving capabilities to evaluate changing programs were presented earlier in (Gebser et al., 2015) which
gave an introduction to multi-shot solving by modeling the board game Ricochet Robots. These works all
provide additional control for grounding and solving via additional parameters that can be accessed by an
external script. Such mechanisms can be used, e.g., to simulate the progress of time and to encode certain
window operators. While Clingo’s multi-shot features target the incremental and reactive control of the ASP
solving process, LARS programs explicitly lift the ASP semantics for streams and provide novel language
constructs than can be flexibly composed.

Another proposal for nonmonotonic stream reasoning is StreamRule (Mileo et al., 2013), which em-
phasizes the potential of ASP-based reasoning for the Semantic Web. The proposed architecture combines
the Linked Sensor Middleware (LSM) (Phuoc et al., 2012b), CQELS for query processing and pattern
matching, and oClingo for subsequent rule-based reasoning. In a similar way, the PrASP system (Nickles
& Mileo, 2015) for probabilistic answer set programming is used as component of a probabilistic stream
reasoning system architecture in (Nickles & Mileo, 2014). As LARS is not geared towards quantitative
uncertainty, we can not directly model the semantics PrASP in our framework. Extending the framework in
this direction is an interesting issue for future work.

A central challenge in incremental reasoning, in particular for materialization of Datalog programs,
arises from fact deletion which requires to identify and retract inferred facts that are not derivable anymore.
The Delete/Rederive (DRed) algorithm (Gupta, Mumick, & Subrahmanian, 1993) works by first overesti-
mating deletions and then rederives them in case they still hold. This potential source of inefficiency was
addressed by the Backward/Forward algorithm (Motik et al., 2015), which avoids the overdeletion phase.
Instead, it determines by a combination of backward and forward chaining which of the facts that may have
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to be removed have alternate proofs from remaining facts. The algorithm was shown to be significantly
faster than DRed in some ontology query answering benchmarks. However, it is not applicable to programs
with negation.

In Section 5.1, we already investigated the relation of LARS and Linear Temporal Logic (LTL). Metric
Temporal Logic (MTL) (Koymans, 1990) is a notational variant of a fragment of Alur and Henzinger’s
(1993) timed propositional temporal logic, which has been conceived to model real-time systems. Infor-
mally, it generalizes LTL (and in presence of past time operators, PLTL), where operators OpIϕ allow for
evaluating a formula ϕ on a set I of time points that can be any convex set (i.e., interval) or is defined by the
congruence relation ≡d c. For example,

�[0,∞)(request→ 3+ [0,1]grant)

expresses that each request is granted within one time step. Specifically, LTL resp. PLTL result for a
uniform interval I = [0,∞) and the discrete time ontology 〈N,≤〉. Compared to LARS, MTL does not
have general window operators (merely interval-bounded versions of the LTL operators G, F resp. G−1, F1

are available) but features all operators of LTL resp. PLTL; notably, time-based sliding windows of LARS
with universal resp. existential formula evaluation correspond to MTL window operators; i.e.,

�a,b2ϕ amounts to �[0,a] ϕ ∧�[0,b]ϕ and �a,b 3ϕ amounts to 3– [0,a]ϕ ∧3+ [0,b]ϕ.

Informally, �[0,a]ϕ (resp., 3– [0,a]ϕ) checks whether ϕ holds always (resp., at least once) within a steps back
from the current time point resp. state; �[0,b]ϕ (resp., 3+ [0,b]ϕ) is analogous for b steps forward. MTL has
a timed state-sequence semantics with arbitrary time increase between successive states; this gives it an
event-driven flavour, and comparability with LARS, where time increases by a single tick, is more difficult,
in particular for LARS programs that resort to minimal models. Even for state-sequences with uniform time
increase, nested windows may yield different results, as windows in LARS narrow down the input stream
to a (finite) substream, while in MTL streams are at any evaluation stage infinite objects.12 Furthermore,
MTL is very expressive, as satisfiability and model checking are both ExpSpace-complete problems.13

While the use of MTL in stream processing has been advocated early on (Heintz & Doherty, 2004),
the interest in it for stream reasoning has recently increased (Calvanese, Kalayci, Ryzhikov, & Xiao, 2016;
Tiger & Heintz, 2016; Brandt, Güzel Kalaycı, Kontchakov, Ryzhikov, Xiao, & Zakharyaschev, 2017). Most
recently, Brandt et al. (2017) have considered a Horn fragment of Metric Temporal Logic called Metric
Time Datalog (datalogMTL). More precisely, it is a fragment of Alur et al.’s (1996) Metric Interval
Temporal Logic (MITL), which uses a dense time ontology (the real numbers R resp. the rational numbers
Q) and allows to express truth of statements over a time interval rather than a single time point; as in
MTL with dense time ontology, in MITL satisfiability and model checking are undecidable in general, but
ExpSpace-complete if point intervals excluded. Brandt et al.’s datalogMTL programs contain rules of the
form A+ ← A1 ∧ · · · ∧ Ak where each Ai is either (i) an inequality or (ii) a formula Op1I1 · · ·OpnInBi,
n ≥ 0, where each Opi is from {�, �, 3+ , 3– }, Ii is an interval over Q, and Bi is an atom, and where A+

is a formula in (ii) without 3+ and 3– . They worked out a canonical model property for query answering,
which is akin to the least model property of Horn logic programs, but technically more involved. Based
on it, they showed that query answering is ExpSpace-complete already in the propositional case; notably,
allowing 3+ and 3– in rule head leads to undecidability. The canonical model property is then exploited to

12Remind, however, that the reset operator . allows one to escape to the original stream; thus narrowing to substreams is not an
essential restriction.

13Under the usual assumption that numbers are represented in binary. The results in Section 4 are invariant under tally (unary)
representation.
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develop a first-order rewriting for non-recursive (acyclic) Horn rules, referred to as datalognrMTL; for this
fragment, query answering is PSpace-complete. Modulo the divergence in window operators and different
time ontologies, datalogMTL appears to be naturally related to LARS Horn rules resp. (negation-free)
programs. It remains an issue for future work to study the relationship between datalogMTL and LARS
in depth, and in particular to see whether notions and techniques for LARS (which is model-centric) can be
exploited for datalogMTL (which is query-centric) and vice versa.

Finally, stream reasoning has also been considered from the perspective of spatio-temporal reasoning,
e.g. in (Doherty, Kvarnström, & Heintz, 2009; de Leng & Heintz, 2016; Kontchakov, Pandolfo, Pulina,
Ryzhikov, & Zakharyaschev, 2016).

7 Conclusion

We have presented LARS, a logic-based formalism to model and analyze stream processing respectively
reasoning over data streams, where the data volume is reduced by using data snapshots called windows.
LARS is equipped with a model-based semantics and offers besides “classical” semantics also an expressive
rule-based language that adopts the answer set semantics for dealing with incomplete information.

Drawing from the observation what operations are typically performed on windows in stream processing,
we have considered the temporal modalities 2, 3 and the nominal operator @t; that is, LARS allows for
distinguishing truth of a formula at (i) specific time points, but also (ii) at some resp. every time point in
a window; furthermore, it offers general window operators that may be nested, which enables reasoning
over streams within the language. After discussing some elementary properties of LARS programs, we
have investigated the computational complexity of major reasoning tasks in LARS, viz. model checking and
satisfiability testing, for both LARS formulas and programs, where we have put emphasis on specific classes
of windows that are widely used in practice (time-based, tuple-based, and partition-based windows). In that,
we have characterized the complexity of instance classes of the problems ranging from P-completeness
in the propositional (ground) case to NExpTimeNP-completeness in the Datalog setting. Notably, the use
of common windows in practice does not add to the worst-case complexity of the underlying fragment of
temporal logic, nor does bounded nesting depth in general.

We have then related LARS to selected other languages and formalisms for reasoning over streams. We
have shown that propositional LARS formulas with sliding time windows can be expressed in linear tempo-
ral logic, and thus amount to a (strict) fragment of the regular languages, while LARS program with such
windows capture the regular languages. Furthermore, we have shown that queries in the well-known Contin-
uous Query Language (CQL) (Arasu et al., 2006) can be captured by LARS, and we have briefly discussed
that the operational semantics of the RDF Stream Processing (RSP) engines CQELS (Phuoc et al., 2011) and
C-SPARQL (Barbieri et al., 2010) can modelled in LARS, while the prominent ETALIS language (Anicic
et al., 2010), which is geared towards complex event processing, is beyond a natural representation.

The modelling of CQL, CQELS and C-SPARQL illustrates the usage of LARS as a formal representation
and analysis framework, which was one of the motivations behind the formalism. As it turned out, the
formalism and its affinity to Answer Set Programming make it attractive as a genuine reasoning language,
which has been pursued in a pilot application in the context of content-centric network management (Beck
et al., 2016, 2017); follow up research in cyber-physical systems are on the agenda. For these endeavors,
recent experimental implementation prototypes of LARS fragments, that cater for incremental reasoning,
will be instrumental.
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7.1 Outlook and Future Work

There are several directions for future work. One is to enrich the LARS framework. Besides aggregates,
towards event processing further temporal operators such as next time (X) and until (U), as well as their
past time versions (X−1, U−1) can be considered. The entailment relation over streams can be naturally
extended adhering to the usual semantics of these operators (where at the end of a stream, Xα evaluates to
false). Accordingly, the evaluation algorithms discussed in Section 4 can be extended, without an increase
of worst case complexity in the general case. However, the complexity of fragments of the language, as well
their expressiveness might be affected.

Another direction is a refined picture of the complexity and expressivity of LARS fragments, both de-
fined syntactically by restricting the rules and/or semantically the window operators resp. functions. The
fragments introduced in (Beck et al., 2015, 2016) may serve here as a starting point. Based on the results,
efficient implementations and optimization may be developed, where in particular incremental methods (as
discussed in Section 6.1), data reduction via small window size (to be determined from the data) and ap-
proximation are of interest.

Related to the previous direction is to extend and deepen the investigation of the relationship to other
formalisms and languages for stream reasoning, in particular to metric temporal logic and datalogMTL as
the Horn fragment thereof. In connection with this, further reasoning tasks, such as prediction based on
future evolutions of the stream might be considered; some initial results have been obtained in (Beck et al.,
2016; Dao-Tran & Eiter, 2017).

Finally, further use of LARS to model stream reasoning languages, e.g. SPARQLStream (Calbimonte
et al., 2010), and to develop reasoning modules for applications remain to be continued.

A The LARS Framework

Proof of Theorem 1. Consider the structureM = 〈I,W,B〉, where I ∈ AS (P,D, t). We first show thatM
is a model of P at time t, i.e., thatM, t |= r for all rules r ∈ P . There are two cases. If r ∈ PM,t, satisfaction
at t holds by definition. Else, let r = α← β1, . . . , βn. We have M, t 6|= β(r) and thus M, t |= β(r)→ α.

As for minimality, suppose that M ′ = 〈I,W,B〉 where M ′ ⊂M is a model of P for D at time t. Then,
M ′, t |= r for each rule r ∈ P , and henceM ′, t |= r for each rule r ∈ PM,t ⊆ P . This meansM ′ is a model
of PM,t at time t; hence M is not a minimal model of PM,t at time t, which contradicts I ∈ AS (P,D, t). �

Proof of Theorem 2. Let I ∈ AS (P,D, t) and t′ 7→ a ∈ I \D. By Definition 12, M = 〈I,W,B〉 is
a minimal model of PM,t for D at t. Towards a contradiction, assume that for all r ∈ P it holds that (i)
M, t 6|= β(r) or (ii)M ′, t |= r, whereM ′ = 〈I \ {t′ 7→ a},W,B〉. We first observe that item (i) cannot hold
for all rules, as this would imply that PM,t = ∅, which has the single minimal model 〈D,W,B〉 at t; this
would imply I = D and thus t′ 7→ a ∈ I would be impossible, contradiction.

We now only consider those rules r ∈ P where M, t |= β(r), i.e., the reduct PM,t 6= ∅. Since for all
r ∈ PM,t we have that M ′, t |= r, where M ′ = 〈I \ {t′ 7→ a},W,B〉, we conclude that M is not a minimal
model of PM,t. This yields the contradiction. �

Proof of Theorem 3. Under the asserted properties, clearly some model M = 〈I,W,B〉 of P exists for
D at t; simply let in I all intensional atoms be true. Furthermore, any model M ′ ⊂ M of PM,t for D at
t satisfies M ′, t |= P , as under the monotonicity assertions M ′, t 6|= β(r) for each (grounded) rule r in
P \ PM,t. By repeating this argument for M ′ etc., we can build a maximal, strictly decreasing chain of
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models M0 = M,M1,M2, . . . of P for D at t. The intersection N of all these models is another model of
P for D at t, and hence no model N ′ ⊂ N of P for D at t can exist. Consequently, N is also a minimal
model of PN,t for D at t; in other words, N is an answer stream of P for D at t. This proves part (i). As for
part (ii), by Theorem 1 each I ∈ AS (P,D, t) is such that M = 〈I,W,B〉 is a minimal model of PM,t at t;
conversely, the chain construction in part (i) starting with any minimal model M = 〈I,W,B〉 of P for D at
t yields N = M , and thus I ∈ AS (P,D, t) holds. �

B Computational Complexity

In this section, we provide proofs of the complexity results and further details on computation.

B.1 LARS Formulas α

Proof of Theorem 4. Let M = 〈S?,W,B〉, S = (T ?, υ?), be a structure, let S ⊆ S? be a substream of S?

and let α be a ground formula. Let N denote the size of M plus S.

PSpace membership. We show that the space used to determineM,S, t  α is bounded byO(|α|∗N+Nk),
where |α| is the size (length) of formula α and k ≥ 1 is some constant.

Indeed, a ground formula α can be represented as a tree whose leaf nodes are atoms from A and whose
intermediate nodes are operators from {¬,∧,∨,→,3,2,@t,�w, .}, where t ∈ T . For example, the for-
mula �102(�#33a ∧ (�43b→ �52(¬c ∧ d))) can be represented by the tree in Figure 8.

The following strategy guarantees that evaluating a ground formula α remains inO(|α|∗N+Nk) space.
We travel the tree in a depth-first-search manner.

(1) When encountering a logical connective: evaluate the truth value of its sub-tree(s) and then combine
the result using the semantics of the corresponding connective.

(2) When encountering a window operator �w: extract a substream S′ = w(S, t) of the current stream S
and store S′ in a new place for evaluating the sub-tree of this operator.

(3) When encountering a 2 or 3 operator: iterate over the timeline T of the current window to determine
the truth value of the sub-tree for each t ∈ T .

(4) When encountering an @t operator where t is a time point (and t ∈ T where S = (T, υ)): evaluate
the sub-tree with reference to this time point.

(5) When encountering a leaf node: check the occurrence of the atom in the evaluation function at the
current reference time point.

case (2) extends the space for setting up the environment for further checking of the sub-tree. The space for
storing computed window S′ = w(S, t) is bounded by N , as a window is a substream of S. Furthermore,
the computation of S′ itself can be done in space Nk, for some constant k ≥ 1, as it takes polynomial time
in the size of S.

Furthermore, when visiting a node in the tree, we only need to consider the windows constructed by
the window operators appearing on the path from the root to the current node. For other already visited
branches, the space allocated for storing windows can be released. In case (3), we loop over all timepoints
t ∈ T and need only an iteration counter.
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Therefore, at anytime, the space used is bounded by the depth of the tree times N , plus the space for
window evaluation; this yields O(|α| ∗N +Nk).
PSpace hardness. Given a QBF of the form

Φ = Q1x1Q2x2 · · ·Qnxnφ(x1, x2, . . . , xn), (15)

where Qi ∈ {∃,∀}, we translate it into a LARS formula

α = W1 �
set:x1 W2 �

set:x2 · · ·Wn �
set:xn φ(x1, x2, . . . , xn), (16)

where for 1 ≤ i ≤ n, Wi = 3 if Qi = ∃, Wi = 2 if Qi = ∀, and �set:xi is a window operator with an
associated window function setxi defined as follows. Given a stream S = (T, υ) and a time point t ∈ {0, 1}:

setxi(S, t) = (T ′, υ′),

where T ′ = T and for all j ∈ T :

υ′(j) =

{
υ(j) \ {xi} if t = 0,

υ(j) if t = 1.

That is, setxi removes xi from the input stream S, if it is called at time t = 0, and it leaves S unchanged if
it is called at t = 1; informally, this amounts to setting xi to false (=0) and to true (=1), respectively.

Let now S? = (T ?, υ?), where T ? = [0, 1] and υ?(0) = υ?(1) = {x1, x2, . . . , xn} and let M =
〈S?,W, ∅〉, where W = {�set:x1 , . . . ,�set:xn}.

Informally, 3 �set:x1 α′ is entailed at t= 0 (likewise, at t= 1), if either at t= 0 or t= 1, after applying
the window function setxi(S, t), the formula α′ evaluates to true (=1) at t; that is, after either setting x1 false
(0) or to true (1), respectively. Dually, 2�set:x1 α′ is entailed at t= 0 (likewise, at t= 1) iff α′ evaluates to
true for both setting x1 to false and to true. The nesting of the formula (16) thus mimics the QBF Φ in (15),
as follows:

(i) the two time points 0 and 1 encode the truth values false and true, respectively.

(ii) By starting with the function υ? as the set {x1, x2, . . . , xn} and by removing in �set:xi the atom
xi on the 0 branch and keeping xi on the 1-branch, the evaluation of α can be seen as traversing a
binary evaluation tree where the substream at each leaf node represents a complete truth assignment
to x1, . . . , xn. Figure 9 shows the tree with three variables.

(iii) The operator 3 (resp. 2) in front of �set:xi simulates the quantifier ∃ (resp., ∀): some (resp. every) of
the subtrees, rooted at the 0 or 1 child, must evaluate to true.

A subtree of the tree starting at the root that fulfills the condition (iii) each satisfies the formula φ(x1, . . . , xn)
at each leaf witnesses then that Φ evaluates to true.

More formally, we show by induction on i = 0, . . . , n that if Sn−i = (T ?, υn−i) is a substream of S?

such that υn−i(0) = υn−i(1) ⊇ {xn−i+1, . . . , xn}, then for the truth assignment σ to x1, . . . , xn−i such
that σ(xj)⇔ xj ∈ υn−i(0), it holds that

M,Sn−i, t Wn−i+1 �
set:xn−i+1 · · ·Wn �

set:xn φ(x1, x2, . . . , xn) (17)
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for any t ∈ {0, 1} iff

Qn−i+1xn−i+1 · · ·Qnxnφ(σ(x1), . . . , σ(xn−i), xn−i+1, . . . , xn), (18)

evaluates to true; here S0 = S?.
For i = 0, the stream Sn is a complete truth assignment to x1, . . . , xn and by construction the claim

holds. For the inductive step, suppose the statement holds for i and consider i + 1. By applying setxn−i

on Sn−(i+1)+1 = Sn−i at t = 0, a stream of form Sn−i+1 results, where xn−i is set to false; thus by the
induction hypothesis

M,Sn−i, 0  �set:xn−iWn−i+1 �
set:xn−i+1 · · ·Wn �

set:xn φ(x1, x2, . . . , xn)

iff M,Sn−i+1, 0 Wn−i+1 �
set:xn−i+1 · · ·Wn �

set:xn φ(x1, x2, . . . , xn)

iff Qn−i+1xn−i+1 · · ·Qnxnφ(σ(x1), . . . , σ(xn−i), xn−i+1, . . . , xn) evaluates to true,

where σ(xn−i) = 0; for t= 1 the argument is analogous, where “0” is replaced by “1”. Hence by definition
of 3 resp. 2, we obtain that (17) holds iff (18) holds. This proves the claim.

For n= 0, as S0 =S? we then obtain that M,S?, t  α for α in (16) and t ∈ {0, 1} iff Φ in (15)
evaluates to true. As M,S?, α and t are computable in polynomial time from Φ, it follows that deciding
M,S, t  α, i.e., model checking for LARS formulas, is PSpace-hard. �

Proof of Theorem 5. PSpace membership follows from the fact that we can guess an evaluation function
v on T and then perform a model check M,S, t  α where S = (T, υ); relative to the set A′ of atoms, the
guess for υ has polynomial size, and thus the combined guess and check algorithm can run in NPSpace; as
NPSpace = PSpace by Savitch’s result (1970), it is thus in PSpace.

The PSpace-hardness follows from a simple reduction of model checking M,S, t  α, where from the
proof of Theorem 4 w.l.o.g. S = S? = (T ?, υ?): we construct

αS = α ∧
∧

t∈T ?,p∈v(t)

@tp ∧
∧

t∈T ?,p∈A′\v(t)

@t¬p

i.e., fix the possible valuation to υ, and ask for an evaluation function υ′ on T ? s.t. M, (T ?, υ′), t  αS . �

Proof of Theorem 6. To decide the problem, we can (a) check that I is an interpretation stream for D,
(b) compute PM,t, and (c) check that M is a minimal model of PM,t, i.e., that (c.1) M, t |= PM,t and (c.2)
no M ′ = 〈I ′,W,B〉, with I ′ = (T, υ′) ⊂ (T, υ) exists such that M ′, t |= PM,t. Now,

1. step (a) is trivially polynomial;

2. steps (b) and (c.1) are feasible in polynomial time using a PSpace oracle; and

3. step (c.2) is feasible in nondeterministic polynomial time using a PSpace oracle (guess (T ′, v′) and
check M ′, t |= PM,t).

Overall, the computation is feasible in NPSpace, thus in PSpace (as NPSpace = PSpace).
The PSpace-hardness of the problem is easily obtained from Theorem 4: for given ground formula α

and M = 〈S,W,B〉, let P = {α← >}, where > is an arbitrary tautology. Note that no intensional data
occur in α, and thus no interpretation M ′ that is smaller than M is possible, and thus M = 〈S,W,B〉 is an
answer stream for P for D at t iff M,S, t  P holds. �
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Proof of Theorem 7. To show satisfiability of a ground LARS programP , we can guess a stream I = (T, v)
and check that I is an answer stream of P for D at t; the guess is polynomial in the size ofA′ and the check
feasible in PSpace by Theorem 6; overall, the computation is feasible in NPSpace, thus in PSpace.

The PSpace-hardness of SAT for LARS programs P follows from the reduction of MC for LARS
formulas to MC for LARS programs in the proof of Theorem 6. �

B.2 Bounded Window Nesting

Proof of Theorem 8. In the discussion preceding the results, a bound N = (#w(α) ∗ |T |)wnd(α) on the
number of substreams that emerge in the recursive evaluation of α has been derived. Clearly the set of all
these substreams forms an evaluation base SB for M,S, α. If wnd(α) is bounded by a constant k, then N
is polynomially bounded in the size of M and α. The result then follows immediately from Theorem 10. �

Proof of Theorem 9. Membership in co-NP can be seen as follows: the PSpace oracle in the algorithm
considered in the proof of Theorem 6 can by Theorem 8 be replaced by a polynomial-time computation.
It follows that we can refute nondeterministically in polynomial time that I is an answer stream of P for
D at t. Consequently, problem MC is for LARS programs P− in co-NP. On the other hand, co-NP-
hardness is inherited from the co-NP-completeness of answer set checking for (disjunctive) propositional
logic programs, cf. (Eiter & Gottlob, 1995), which is subsumed by model checking for LARS programs. �

B.3 Semantic Restriction: Sparse Windows

Proof of Lemma 1. Indeed, by traversing the recursive Definition 9, we can add the edges of WGSB =
(N,E) as described, by calculating each wk(Sk−1, t), which takes polynomial time; there are |T ?| many
such calculations to make, and in total thus at most #w(ϕ) ∗ |T ?| many, where #w(ϕ) is the total number
of window occurrences in ϕ. In order to find wk(Sk−1, t) in SB , i.e., the stream S′ ∈ SB such that S′ =
wk(Sk−1, t) one can use hashing or, if the stream is to large, use a trie structure which makes this feasible
in O(‖S′‖) time, where ‖S′‖ is the size of S′ (which is O(|A| ∗ |T |)).

Thus in total the time to compute WGSB for (M,S, ϕ) is

O(#w(ϕ) ∗ |SB| ∗ |T ?| ∗ (Cw + ‖S?‖) + |ϕ|) = O(|ϕ| ∗ |SB| ∗ |T ?|k+1 ∗ |A|k), (19)

where Cw = O(‖S?‖k) = O(|T ?|k ∗ |A|k) is a polynomial in ‖S?‖ that bounds the evaluation time of
any window. Indeed, there are at most #w(ϕ) ∗ |SB| ∗ |T ?| many edges to consider, and computing plus
matching a window S′ against SB takes O(Cw + ‖S?‖) time. Overall, this is polynomial in the size of M ,
SB , and ϕ. �

Proof of Proposition 2. The statement is proved by induction on the structure of the formula ϕ. In the base
case, ϕ is a single atom a, and by construction the windows graph WGSB has no edges. The node (S, t),
t ∈ T ? is labeled with a iff a ∈ υ(t), where S = (T, υ), and thus M,S, t  ϕ iff ϕ ∈ LSB (S, t) holds.
In the induction step, assume that the statement holds for all subformulas of ϕ, and consider the different
cases of the root connective op of ϕ. From the induction hypothesis that or each M,S, t and subformula
α of ϕ, the entailment M,S, t  α is correctly reflected by α ∈ LSB (S, t), it is not hard to verify that in
each case, ϕ is added to the label of (S, t) if and only if M,S, t  ϕ holds. Note in this context that for
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op = �w and op = ., the window graph WGSB for ϕ contains the one for M,S′, t  α resp. M,S, t′  α
or M,S?, t  α in the recursive Definition 9 as a subgraph. �

Proof of Theorem 10. From a window graph WGSB = (N,E) for (M,S, ϕ), where M = 〈S?,W,B〉,
we can drop each node S′ 6= S from SB that does not occur in E; the remaining graph WGS?B = (N ′, E)
is the smallest window graph possible, i.e., N ′ ⊆ N holds for each window graph WGS′B = (N,E) for
(M,S, ϕ). Notably we can build S?B on the fly by initially setting S?B = {S} and by then adding any
S′ = wk(Sk−1, t) along the window path that is not yet member of S?B . Following the analysis in Lemma 1,
as inserting a stream S into SB is like searching feasible in O(‖S‖) time, building WGS?B take also time
bounded by (19), i.e., by O(#w(ϕ) ∗ |SB| ∗ |T ?| ∗ (Cw + ‖S?‖) + |ϕ|) = O(|ϕ| ∗ |SB| ∗ |T ?|k+1 ∗ |A|k).

The time to construct the bottom labeling is bounded by O(|T ?| ∗ |S?B| ∗ |ϕ|): for each subformula ϕ′ of
ϕ and pair (S′, t′), where S ∈ S?B and t′ ∈ T ∗ we have to decide whether ϕ′ is put in LSB (S′, t′). This can
be decided by constantly many lookups of already constructed labels for subformulas of ϕ′; for 3α, we can
use a flag that is set true if (S′, t′) is labeled with α, where t′ ∈ T . For 2α, we can proceed similarly.

The total runtime of the algorithm is thus bounded by

O(|ϕ| ∗ |SB| ∗ |T ?|k+1 ∗ |A|k + |T ?| ∗ |S?B| ∗ |ϕ|) = O(|ϕ| ∗ |SB| ∗ |T ?|k+1 ∗ |A|k),

Given that the size of SB is polynomial in the size of M and ϕ, it follows that the runtime is polynomial in
the size of M and ϕ. �

Proof of Theorem 11. By Theorem 4, it remains to show PSpace-hardness. For this, we reconsider the
reduction from evaluating a QBF Φ = Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn) as in (15) to model checking
for a LARS formula (16), and adapt the reduction as follows.

For each atom xi, we introduce a fresh atom wi, and we change the content of stream S? = ([0, 1], υ?)
to υ?(0) = {x1, . . . , xn}, υ?(1) = {w1, x1, . . . , wn, xn}. Furthermore, we replace the window �set:x1

with the partition-based window �idx(i),n(i)
, where idx(i) creates two partitions idx−1(1) = {wi, xi} and

idx−1(2) = A\{wi, xi}, with the counts n(i)(1) = (1, 2) and n(i)(2) = (∞,∞), where∞ can be replaced
by any number ≥ 2 ∗ (n− 1). For making the selection deterministic, we assume any total order ≤ (e.g.,
lexicographic order) such that wi ≤ xi for all i = 1, . . . n.

Informally, these changes have the following effects:

• evaluated at time point 0, the partition based window function pidx(i),n(i)
will for the partition {wi, xi}

remove at time0 one atom (`(i) = 1); as wi is not in υ?(0), it will remove x1; at 1, it will remove two
atoms (u(i) = 2), and thus both wi and xi.

• evaluated at time point 1, pidx(i),n(i)
will for the partition {wi, xi} remove at time 1 one atom (as

`(i) = 1), and as wi < xi, it will remove wi; the count u(i) = 2 has no effect as 1 is the maximal time
point in T ? = [0, 1].

Thus, the stream pidx(i),n(i)
(S?, 0) has neither xi nor wi at t = 0, 1, and pidx(i),n(i)

(S?, 0) has xi at
t = 0, 1 and wi not at t = 0, 1. Thus, the evaluation of the formula

α′ = W1 �
idx(1),n(1)

W2 �
idx(2),n(2) · · ·Wn �

idx(n),n(n)
φ(x1, x2, . . . , xn),

on the modified S? generates at the innermost evaluation level the same streams

pidx(n),n(n)
(pidx(n−1),n(n−1)

(· · · pidx(1),n(1)
(S?, t1), · · · ), tn−1), tn),
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where t1, . . . , tn ∈ {0, 1}, as the evaluation of the formula α in (16) on the original S? at the innermost
level, which are given by setxn(setxn−1(· · · setx1(S?, t1), · · · ), tn−1), tn).

Consequently, α′ is entailed at an arbitrary t ∈ {0, 1} on the modified S? iff α is entailed at an arbitrary
t ∈ {0, 1} on the original S?. This proves PSpace-hardness.

We note that the reduction proves the result where each partition-based window creates only two (indi-
vidual) partitions, but all such windows use the same tuple counts n(i) = (1, 2). The reduction above can
be easily adjusted to partition-based windows that use all the same partitioning but different tuple counts:
just let idx(i′) = idx, where idx(j) = {wj , xj} and n(i′)(j) = (`ij , u

i
j), for i, j = 1, . . . , n, such that

`ij = uij = ∞ if j 6= i, and `ij = 1 and uij = 2 if j = i; then each associated partition-based window

function pidx(i′),n(i′)
clearly coincides with pidx(i),n(i)

, which implies PSpace-hardness for this setting. �

Proof of Theorem 12. To begin with, each reset operator . that occurs in the formula α returns the stream
S?, and thus we need to deal with substreams of S and S? in the evaluation of α. It is sufficient to consider
just S (and substreams of it), as S = S? is covered and the result then clearly follows.

As argued in the discussion, each result of a time-based window function τ l`,u,d(S, t) can be expressed as
the result of a tuple-based window function #`′,u′(S, t′), where the counts `′ and u′ are set such that exactly
the atoms in τ l`,u,d(S, t′) will be selected. Furthermore, each result of a tuple-based window function
#`,u(S, t) can be viewed as the result of a dummy partition-based window function pidxA,nA(S, t) where
idxA : A → {1} and nA(1) = (`, u), i.e., only one partition exists that contains all tuples; clearly, this
trivial partition is always the union B1 ∪ · · · ∪Bk of all base groups Bi for meager partitionings. Thus, it is
sufficient to consider the latter case.

Consider a stream S = (T, υ), T = [t`, tu], and some time point t ∈ T . We can describe with a
tuple di = (`1, u1, . . . , `k, uk, t) stream S, where `i states how many atoms in S from [t`, t] that are in
partition Bi should be included, and ui similarly how many atoms in S from [t + 1, tu] are in Bi. Now if
pidx,n(S, t′) is applied on S, we can single out, for each partition idx−1(j) =

⋃
{Bi | Bi ⊆ idx−1(j)}, how

many atoms back (resp. forward) from t′ have to be included, depending on n(j) = (`idx
j , uidx

j ) and we can
break this down to counts `′i, u

′
i for all base groups Bi, i = 1, . . . , k. Thus we obtain a description d′i =

(`′1, u
′
1, . . . , `

′
k, u
′
k, t
′) that describes pidx,n(S, t′). Overall, there are polynomially many such descriptions

in the size of the input.
Finally, we extend the description di for a substream with a filter A to sd = (`1, u1, . . . , `k, uk, t, A),

where for describing the initial stream S we can use A = A (i.e., no atom is filtered). Clearly, if we apply a
meager partition-based window function on S at t′, the description sd′ = (`1, u1, . . . , `k, uk, t, A) of S can
be adjusted to represent pidx,n(S, t′) by a description sd = (`′1, u

′
1, . . . , `

′
k, u
′
k, t
′, A);14 in case of a filter

window application, we can represent �A′(S, t′) by sd′ = (`′1, u
′
1, . . . , `

′
k, u
′
k, t
′, A ∩ A′). Consequently,

the possible descriptions that result are of the form sd = (`1, u1, . . . , `k, uk, t, A1 ∩ A1 ∩ · · · ∩ Ai) where
�A1 ,�A2 , . . . ,�Ai are the filter windows encountered on some path from the root of the formula tree of
ϕ; overall, the number of paths (and thus such sequences) is bounded by the size of ϕ. Hence, overall the
number of extended descriptions is polynomially bounded in the size of the input. �

B.4 Non-ground Case

Proof of Theorem 13. Combined Complexity. We first consider the combined complexity.

14We tacitly assume here that the order of atoms that is used to resolve non-determinstic selection is static and does not depend
on the time point t.
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(MC) Under the above assumptions, model checking for a LARS formula α(x) on a structure M =
〈S?,W,B〉 w.r.t. S and time point t is PSpace-complete; this is because an instance α′ of α(x) where
this fails can be guessed and verified in PSpace.

Likewise, MC for non-ground LARS programs P is in PSpace; to establish this, the algorithm in the
proof of Theorem 6 has to be adapted, in that it is avoided that the reduct PM,t is built explicitly; rather,
all ground instances of all rules r ∈ P are considered one by one to check satisfaction of PM,t, which is
feasible in polynomial space.

The PSpace hardness for both α and P is inherited from the ground case. We note, however, that already
for formulas α(x) = ¬(p1(x1) ∧ · · · ∧ pk(xk)) i.e., negated conjunctive queries, the problem is co-NP-
hard; this follows from the classic result that satisfiability of a conjunctive query is NP-complete (Chandra
& Merlin, 1977).
Bounded window nesting. For the LARS formulas in the class α−, the problem MC is co-NP-complete:
a ground instance α′ of α such that M,S, t 1 α′ can be guessed and verified in polynomial time; the
co-NP-hardness is inherited from the NP-completeness of conjunctive query evaluation.

Similarly, for LARS programs P− the complexity increases from co-NP in the ground case to co-Σp
2,

as the evaluation of LARS formula α− is co-NP-complete: checking (c.1) that M, t |= PM,t is in co-NP
and (c.2) that no I ′ ⊂ I for D exists such that M, I ′, t  PM,t is in co-Σp

2 = Πp
2: a guess for such an I ′,

which is of polynomial size, can be verified with an NP oracle in polynomial time. Combining (a)-(c), this
leads to membership in co-Σp

2 = Πp
2. The matching Πp

2-hardness is inherited from answer set checking of
non-ground Datalog programs, see (Eiter et al., 2007).
(SAT) As regards SAT, arbitrary predicate arity causes an exponential size grounding for the valuation υ
on T , i.e., for S = (T, υ), as the size of the set A of all atoms becomes exponential. However, once υ is
available, we can for a ground formula α decide M,S, t  α, where M = 〈S?,W,B〉, in time exponential
in the size of the problem input: modulo window evaluation, the recursive evaluation procedure from The-
orem 4 runs in polynomial space (iterations resp. guesses are made over the timeline T ?); in total, it will
encounter at most exponentially many points of substream creation (i.e., window evaluation) in the size of
T ? and α. Each substream creation is polynomial in the size of S; as the latter is exponential in the size
of the problem input, it follows that the total time spent to create substreams will also be exponential in
the size of the problem input. Thus, deciding M,S, t  α is feasible in time exponential in the size of the
problem input; if the size of S? is exponential in the number |P| + |C| of predicates and constants, it is
feasible in time polynomial in the size of S?. Thus for open LARS formulas α, the complexity of SAT is
in NExpTime, while for non-ground LARS programs P , it is in NExpTimeNP: an exponential size guess
I = (T, υ) for an answer stream for P of D can be verified with an NP oracle in polynomial time. The
matching hardness results follow from results for the complexity of disjunctive Datalog programs (Eiter
et al., 1997): for LARS formulas, NExpTime-hardness is inherited from the NExpTime-completeness of
deciding whether a disjunctive Datalog program P has some classical (Herbrand) model, and for LARS
programs NExpTimeNP-hardness follows from the NExpTimeNP-completeness of deciding whether a dis-
junctive Datalog program P has some answer set. Both these results are easy corollaries to the proof of
Theorem 8.5 in (Eiter et al., 1997). As P can be seen as an open LARS formula and no window operators
occur in it, the hardness results hold already for α− resp. P−.

Data Complexity. The data complexity of LARS formulas and LARS programs (i.e., the formula α resp. the
program P is fixed and just varying the data stream D and the time point t is varied) coincides with the one
of ground LARS formulas α− (resp. programs P−), as shown in Table 1. Indeed, α (resp. P ) can be reduced
to an equivalent ground formula α′ (resp. ground program P ′) by instantiation in polynomial time, as only
polynomially many ground instances of α (resp. each rule in P ) exist. The matching lower bounds, are
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obtained from: (a) arbitrary polynomial-time window functions, which implies P-hardness of MC for fixed
LARS formulas (b) the data complexity of disjunctive Datalog program; from the proofs in (Eiter et al.,
1997), it follows that under data complexity, model checking is co-NP-complete; deciding classical model
existence is NP-complete; and deciding answer set existence is Σp

2-complete. This proves the result. �

C Relation to other Languages and Formalisms

C.1 Temporal Logic

Proof of Proposition 3. The first equivalence is shown by induction on the structure of the formula; the
second follows trivially. The base case of an atom is trivial; the other cases follow easily from the induction
hypothesis. Indeed, the cases where ϕ is a Boolean combination are immediate; likewise, for 2α and 3α
simple quantifier elimination works, and for @t′α moving to the respective position. For the case of �i,jα,
the window around t is properly calculated, where T ′ = [`′, u′] and `′ = max(`, t−i) and u′ = min(t+j, u);
note that t ∈ T ′ holds. Finally, for .α, as time-based windows do not remove content, all what needs to be
done is to reset the bounds of the interval considered. �

Proof of Theorem 14. For a formula ϕ in which each occurrence of 2, 3 and @t′ is windowed (call such ϕ
windowed), by the argument given in the discussion after Theorem 14, if we set PLTL(t′, ϕ) to the formula
(12), then M,S, t′  ϕ iff π(M), t′ |= PLTL(t′, ϕ) holds.

Exploiting this, we can transform a formula ϕ = @tα, where α is windowed, to

PLTL(t′, ϕ) = ¬u ∧ G−1(¬X−1> → Xt PLTL(t, α)); (20)

that is, move to the initial position 0 of the path and then check that at position t the formula PLTL(t, α)
holds.

For a formula ϕ = 2α, where α is windowed, we can similarly as in (20) write naively

¬u ∧ G−1(¬X−1> →
∧∞
t=0 X

t(u ∨ PLTL(t, α)); (21)

this is not an LTL-formula, but again we observe that only finitely many PLTL(t, α) will be produced: for
some t ≥ t0 large enough, all formulas PLTL(t, α) are identical. Thus we can set

PLTL(t′, ϕ) = ¬u ∧ G−1(¬X−1> →
(∧t0−1

t=0 Xt(u ∨ PLTL(t, α)) ∧ Xt0 G(u ∨ PLTL(t0, α))
)
. (22)

For a formula 3α where α is windowed, the transformation is analogous, viz.

PLTL(t′, ϕ) = ¬u ∧ G−1(¬X−1> →
(∨t0−1

t=0 Xt(¬u ∧ PLTL(t, α)) ∨ Xt0 F(¬u ∧ PLTL(t0, α))
)
. (23)

This argument can be extended to show by induction on the structure of an arbitrary LARS formula ϕ
that some LTL-formula PLTL(t′, ϕ) exists such that M,S, t′  ϕ iff π(M), t′ |= PLTL(t′, ϕ); where the
induction statement includes that some t0 ≥ 0 exists such that for all t′ ≥ t0 we have PLTL(t′, ϕ) =
PLTL(t0, ϕ). This proves the first (left) equivalence in (i); the second, viz., π(M), t′ |= PLTL(t′, ϕ) if and
only π(M), 0 |= Xt

′
PLTL(t′, ϕ), is obvious.

As for (ii), using the formula end(t) = Xt ¬u ∧ Xt+1 u, we can naively transform ϕ to∨∞
t=0(end(t) ∧ PLTL(t, ϕ)), (24)
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which is not an LTL-formula. As all PLTL(t, ϕ) for t ≥ t0 are identical, we obtain

PLTL(ϕ) =
∨t0−1
t=0 (end(t) ∧ PLTL(t, ϕ)) ∨ Xt0 F(end(t0) ∧ PLTL(t0, ϕ)), (25)

where end = ¬u ∧ Xu. It then follows that M,S, t  ϕ iff π(M), 0 |= PLTL(ϕ); this proves the result.
�

Proof of Theorem 15. To show that LARS programs can express only regular languages, we first note that
any propositional LARS formula ϕ in which only windows �i,j occur is first-order expressible, i.e., that
there is a monadic first-order formula Φϕ(x) such that for any structure M = 〈S,W, ∅〉, S = (T, υ) and
t ∈ T , we have M,S, t  ϕ iff S |= Φ(t); this formula can be built inductively, using variables to access
the window range, and by taking the distance of the time point t to the start and end of S, respectively, into
account.

Furthermore, it is well-known that answer set existence for a logic program P can be expressed by a
sentence Ψ(P ) in second-order logic, see e.g. (Eiter et al., 1997; Baral, 2003). Informally, that sentence
says that there exists an interpretation I of the predicates in P such that (i) I is a model of P , and (ii)
there is no interpretation I ′ ⊂ I such that I ′ is a model of P I , where P I is the reduct of P w.r.t. I .
Notably, Ψ(P ) is modular w.r.t. rules and extensional data, i.e., Ψ(P ) =

⋃
r∈P (Ψ({r})) and for facts D

over external predicates not occurring in rule heads of P , Ψ(P ∪ D) holds iff M(D) |= Ψ(P ), where M
is the rendering of D as a FO-structure. Moreover, if all predicates in P have arity at most one, then Ψ(P )
amounts to a monadic second-order (MSO) formula. One can easily extend the translation Ψ from ordinary
logic programs P to programs where the rule constituents are arbitrary FO-formulas rather than atoms and
literals, i.e., with rules of the form

Φ0(x0)← Φ1(x1), . . . ,Φ(xn),

where the Φi(xi) are FO-formulas, while preserving the monadic arity bound. It follows that over streams
S = (T, υ), T = [0, t], which represent strings υ(0)υ(1) · · · υ(t) over the alphabet Σ = 2G

E(P ), answer
stream existence of P for S at t can be expressed in MSO; hence by the Büchi-Elgot-Trakhtenbrot Theorem
(Büchi, 1960b, 1960a; Elgot, 1961; Trakhtenbrot, 1961) propositional LARS programs can express only
regular languages.

Conversely, suppose A = (Σ, Q, δ, qo, F ) is a deterministic finite state automaton (FSA),15 where Σ is
the alphabet, Q is the set of states, δ ⊆ Q×Σ×Q is the (w.l.o.g. total) transition function, q0 is the initial
state, and F is the set of final states, that accepts a regular language LA ⊆ Σ∗ such that ε /∈ LA. We encode
A in a propositional LARS program PA with external atoms GE(P ) such that A accepts a string σ0σ1 · · ·σt
from Σ∗ iff PA has an answer set for M = 〈S,W, ∅〉 at position t, where S = (T, υ), T = [0, t], and
υ(t′) = {σt′}, for t′ = 0, . . . , t. Furthermore, by design PA has some answer stream for S at t only if S is
a valid string encoding (i.e., |υ(t)| = 1 for all time points t in S).

To this end, we use as intensional atoms the statesQ, a further atom p to distinguish, in combination with
a window operator, neighbored positions in a string, and an atoms s to mark the beginning of the stream.

15The encoding can be readily extended to nondeterministic FSA without exponential blowup, but we refrain from this here.
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We then set up the following rules for program PA:

⊥ ← 2(
∧
σ∈GE(P ) ¬σ ∨

∨
σ 6=σ′∈G(σ ∧ σ′)) (26)

@0 (q0 ∧ p ∧ s)← > (27)

@1¬s ∧2(�1,03¬s→ ¬s)← @1> (28)

2(¬s→ (�1,03p ∧�1,03¬p))← @1> (29)

2

(
(p ∧�1,03(¬p ∧ q ∧ σ)→ q′)
∧(¬p ∧�1,03(p ∧ q ∧ σ)→ q′)

)
← > for (q, σ, q′) ∈ δ (30)

⊥ ← q, σ for (q, σ, q′) ∈ δ, q′ /∈ F (31)

Intuitively, the first rule is a constraint which checks that at each position exactly one letter from G occurs,
i.e., that the input stream encodes a word over G. We assign to the first position q0, p, and s by (27). The rule
(28) ensures that s can be only at the first position; it is effective if the input string has at least two letters
(expressed by @1>, i.e., position 1 is within the stream). In that case, s can not be at second position 1
(ensured by the left conjunct), and then it can not be at any other position (right conjunct). The rule (29)
propagates in alternation p and ¬p from position 0 through the stream. The rule (30) checks the transitions
of the automaton at the non-final positions, where p and ¬p are used to distinguish the current and the
predecessor position. Finally, the rules (31) check the transition at the last position of the input: if it does
not lead to acceptance, no model (and thus answer stream) is possible.

For a non-void S, it can be shown that PA has an answer stream for M = 〈I,W, ∅〉 for S at t iff
S correctly encodes a string σ0σ1 · · ·σt and A accepts S. While (26) ensures the correct encoding, the
capturing of acceptance can be argued as follows. By induction on the formula (27) for the base and (28),
(29) for the induction step, we can see that in any model I of P for S at t, s occurs only at position 0 and p
only at each even position 0, 2, etc. Furthermore, again by induction using (27) and (30) that up to position
t′, 0 ≤ t′ ≤ t, we have in I at position t′ the state q in which the automaton A is after reading the prefix
σ1σ2 . . . σt′−1, 0 ≤ t′ ≤ t of the string encoded by S; notice that supportedness and minimality of answer
streams (Theorems 1 and 2) imply that I has at each position t′ a unique state q′. Rule (31) checks then
whether reading the last letter σt leads to acceptance.

Thus, all regular languages L modulo the empty string ε can be expressed; the latter could be easily
handled, if the empty steam would be allowed, using the formula 2(⊥) to recognize it (for S = (T, υ), we
have M,S, 0  2(⊥) iff T = ∅).

On the other hand, the above encoding uses the @-operator. With a little more effort and exploiting
answer set minimality, we can eliminate its use. Roughly speaking, the idea is to ensure the presence of s
at position 0, which then by (28) can not occur elsewhere. We then can use s to recognize the first position,
i.e., to emulate @0, and replace (27) with

2(s→ q0 ∧ p)← >; (32)

furthermore, we can then replace @1> everywhere by 3¬s and remove @1¬s from (28). Suppose we make
these changes and set up the rule

3s← > . (33)

Then in combination with the modified rule (28),

2(�1,03¬s→ ¬s)← 3¬s, (34)
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we obtain that in every model I for S at t, the occurrences of s form an initial segment of the stream. In
order to make sure that this initial segment is minimal, i.e., consists only of position 0, we use a new atom
s′ and state that s′ must also form an initial segment in every model I , and moreover one that is contained
in the segment of s:

3s′ ← > (35)

2(�1,03¬s′ → ¬s′)← 3¬s (36)

2(s′ → s)← >. (37)

To ensure the minimality of the segment for s, we add a constraint which excludes that the segment for s′ is
a proper subsegment:

⊥ ← 3(s ∧ ¬s′). (38)

As s′ occurs only in the rules (35)–(38), minimality and supportedness of answer streams (Theorems 1 and
2) imply that in any answer stream I of the resulting program P ′A for S at t, the atom s′ (and thus also s)
must be present at position 0 and only there.

Formally, it can be shown that P ′A has an answer stream for S = (T, υ), T = [0, t], at t iff S correctly
encodes a string σ0σ1 · · ·σt from Σ∗ and A accepts σ0σ1 · · ·σt. This concludes the proof of the result. �

For an example of a regular language that is not expressible in LTL but definable by some LARS
program in PN,N that has only intensional atoms, consider L = a(aa)∗ over Σ = {a}, i.e., strings of a’s
with odd length. The following program P defines L:

2(�0,1(3a ∧3¬a) ∨�1,0(3a ∧3¬a) ∨ a)← (39)

2a← 3�0,1 2¬a ∨3�1,0 2a (40)

a← (41)

⊥ ← ¬2a (42)

Informally, for a timeline T = [0, n], n ≥ 0, the string ({a})n+1 is an answer stream of P at t = n, if and
only if n is even. To see this, clearly the corresponding stream S = (T, {i 7→ {a} | 0 ≤ i ≤ n}) induces
a model M = 〈S,W,B〉 of P ; the constraint (42) ensures that this M is the only answer stream candidate
for this timeline. The reduct PM,t contains all rules of P except (42). By the rule (41), a smaller model M ′

of PM,t, requires n > 0, and by the rule (40) starting from position i = n, n− 1 down to 0 we must have at
position i in alternation a, ¬a, a etc. and ¬a at position 0 (which means |T | is even, i.e.,n is odd); the rule
(39) provides the necessary support for the alternating presence of a.

Note that the program P fits both alphabet settings (a) Σ = 2A and (b) Σ = {{σ} | σ ∈ A}. To
establish that in the setting (b), PN,N is strictly more expressive than the class of LARS �i,j formulas, it is
then sufficient to observe that any language L over Σ defined by a LARS �i,j formula ϕ is also defined by
the LARS program Pϕ = {

∨
{σ}∈Σ σ ←; ⊥ ← ¬ϕ}. To establish that in setting (a), PN,N and the class

of LARS �i,j formulas are incomparable, just consider the language L = {{a}, {}}: by the minimality
condition, not both S = ([0, 0], {0 7→ {}}) and S = ([0, 0], {0 7→ {a}}) can be answer streams of a LARS
program defining L, but L is definable by the LARS formula ¬@1(a ∨ ¬a).

C.2 Continuous Query Language (CQL)

In this section, we give additional details on the translation from CQL to Datalog, resp. LARS, and the
presented CQL query q of Example 23. First, applying rel on q gives us the following SQL query:



INFSYS RR 17-03 63

πtram.ID , plan.Y, tram.T+plan.D→TY (q)

−

(q1) πx (q′12)

./ (q12)

(q1) × (q2)

tram jam

(a) Main tree

σtram.ST=plan.X ∧ tram.ID=line.ID ∧ line.L=plan.L (q1)

× (q0)

tram ×

line plan

(b) Sub tree for (q1)

Figure 10: Relational algebra expression in tree representation. In projection node (q′12) x is
tram.ID , tram.ST , tram.T, line.ID , line.L, plan.L, plan.X, plan.Y, plan.D.

SELECT ID, plan.Y, TY
FROM tram part ID rows 1, line, plan
WHERE tram part ID rows 1.ID=line.ID AND

line.L=plan.L AND
tram part ID rows 1.ST=plan.X AND
TY=tram part ID rows 1.T+plan.D AND
NOT EXISTS

(SELECT * FROM jam range 20
WHERE jam range 20.ST=tram part ID rows 1.ST)

Translating this CQL query to relational algebra according to (Dadashzadeh & Stemple, 1990), we get the
following relational algebra expression RelAlg(rel(q)), where tram and jam abbreviate relation names
tram part ID rows 1 and jam range 20 , respectively.

q = πtram.ID , plan.Y, tram.T+plan.D→TY (q1 − q′12),
where

q1 = σtram.ST=plan.X ∧ tram.ID=line.ID ∧ line.L=plan.L q0 ,

q0 = tram × line × plan ,

q′12 = πtram.ID ,tram.ST ,tram.T,line.ID ,line.L,plan.L,plan.X,plan.Y,plan.D q12 ,

q12 = q1 ./ q2 ,

q2 = tram × jam .

Figure 10 shows the syntactic expression tree. Note that different such translations might be considered,
e.g., by considering other orders in cross products, or joining earlier, etc. However, no semantic differences
arise from such optimizations and thus no further discussion is needed for our purposes.

The translated Datalog program ∆D(q) = Dat(RelAlg(rel(q))), using the translation in (Garcia-Molina
et al., 2009), is the one in Example 24.
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Without loss of generality, i.e., due to possible renamings, we assume in the sequel that relation names
Bi and stream names Si are pairwise distinct.

Proof of Theorem 16. Before going into the details, let us note that the relational algebra expression
is tree-shaped and thus ∆D(Q) is an acyclic program (i.e., there is not cyclic recursion through rules).
Furthermore, Dat only creates atomic rule heads; therefore ∆D(Q) is also definite (i.e., each rule head
consists of an atom). The translation ∆L(Q) only adds a stratified layer to ∆D(Q), i.e., the snapshot rules.
Thus, both translations ∆D(Q) and ∆L(Q) amount to stratified theories and have a unique answer set resp.
answer stream relative to given input data.

A correspondence between the CQL results cqlRes(Q, t) and the answer set of ∆L(Q) at time t obtained
by the following steps.

(1) First, we construct the input for the translated Datalog program, i.e., the atoms reflecting the static
relations and those obtained from snapshots. Correctness and completeness of the (compound) trans-
lation – from SQL to Relational Algebra and from the latter to Datalog – establishes a correspondence
between the unique answer set of the Datalog program and the results of the CQL queries (Lemma 2).

(2) Lemma 3 shows that these atoms need not be provided as such, but can be derived by snapshot rules
in LARS itself.

(3) Lemma 4 guarantees that the unique answer set of the Datalog encoding ∆D(Q), given snapshot
relations as input, corresponds with the unique answer stream of the LARS encoding ∆L(Q), given
the stream as input.

(4) By combining these lemmas, we obtain the desired correspondence between the results of CQL
queries and the answer stream of respective LARS programs.

More formally, let Q be a set of CQL queries to be evaluated on static relations B = B1, . . . , Bm and input
streams S = S1, . . . , Sn at a time point t. Without loss of generality, assume that to each input stream Si
only one of the CQL window functions in the first column of Table 3 (with window parameters replaced
by values) is applied. We denote by WINDOWi the CQL window function applied on stream Si and by
WINDOWi(Si, t) the snapshot obtained for Si at time t after the S2R operator. That is, WINDOWi(Si, t) contains
the selected tuples. (In case there is the need to apply two different windows on the same input stream, one
can equivalently take a renamed copy of the stream.) The following defines an according set of input facts
for the Datalog program ∆D(Q) at t:

F (B, S, t) = ∆(B) ∪ {rel(Si)(c) | c ∈ WINDOWi(Si, t)}

where ∆(B) = {bi(c) | c ∈ Bi} as before. That is, rel(Si)(c) is an atom corresponding to tuple c from
the (snapshot of) stream Si. For any query q ∈ Q, let q̂ denote the head predicate of the rule in ∆D(q)
corresponding to the root of the relational algebra expression for q. The following lemma establishes the
correspondence between the answer set of ∆D(Q) and CQL results cqlRes(Q, t) for Q at t; it follows from
the correctness and completeness of RelAlg and Dat .

Lemma 2. Let A be the unique answer set of ∆D(Q)∪F (B, S, t), i.e., the translated Datalog program plus
input facts as obtained from static relations and snapshot relations at time t. Then, for every query q ∈ Q,
q̂(c) ∈ A iff c ∈ cqlRes(Q, t).

The next lemma states that the snapshot semantics of CQL’s S2R operator is faithfully captured by LARS
formulas as given in Table 3.
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Lemma 3. Assume static relations B = B1, . . . , Bm and streams S = S1, . . . , Sn, LARS window functions
W corresponding to those in CQL queries Q, and let M = 〈S,W,∆(B)〉 be a structure such that ∆(S) ⊆ S.
Moreover, let wi be the LARS window function corresponding to WINDOWi due to Table 3. Then, c ∈
WINDOWi(Si, t) iff M,∆(S), t  �wi3s(c).

Proof. Consider an element 〈c, t′〉 in stream Si which corresponds to the inclusion s(c) ∈ υ(t′) in ∆(Si) =
(T, υ). That is, we can view LARS streams as notational variant of CQL streams, and vice versa. It
follows directly from their definitions that window functions WINDOWi and wi (due to Table 3) select the
same elements. Thus, 〈c, t′〉 is in the CQL window iff it is in the LARS window. The appearance time t′ is
abstracted away in CQL by the S2R operator, which amounts to existential quantification with 3 in LARS.
Thus, c ∈ WINDOWi(Si, t) iff �wi3s(c). 2

We now establish correspondence between the encodings ∆D(Q) and ∆L(Q) at a time point t.

Lemma 4. Let Q be a set of CQL queries, B = B1, . . . , Bm be static relations, S = S1, . . . , Sn be input
streams, and let t be a time point. Moreover, let A be the unique answer set of ∆D(Q) ∪ F (B, S, t) and
I = (T, υ) the unique answer stream of ∆L(Q) for ∆(S) at t (using structure M = 〈I,W,∆(B)〉). Then,
for all q ∈ Q, q̂(c) ∈ A iff q̂(c) ∈ υ(t).

Proof. From Lemma 3 we obtain that snapshot relations rel(s) can be derived directly from the input
stream ∆(S), using snapshot rules of form (14), instead of providing them explicitly. That is, the LARS
subprogram ∆L(Q) \∆D(Q) essentially computes F (B, S, t) and associates these snapshot atoms of form
rel(s)(c) with time point t in the answer stream I = (T, υ): if an atom s(c) is contained in the window,
�wi3s(c) holds and in order for the snapshot rule to be satisfied, rel(s)(c) must be contained in υ(t). Due
to the minimality and supportedness of I , rel(s)(c) is contained in υ(t) only in this case. Moreover, no time
point t′ 6= t will be assigned with any snapshot atom rel(s)(c) (due to the form of snapshot rules). The
snapshot atoms occur as rule heads only in snapshot rules and no rules other than snapshot rules distinguish
∆D(Q) and ∆L(Q). We thus conclude for any element 〈c, t〉 that will be selected by WINDOWi, c ∈ F (S, B, t)
by definition, and si(c) ∈ υ(t) as argued. As the semantics after the S2R operator is captured by ∆D(Q),
we obtain the desired correspondence; in particular for output predicate q̂ that q̂(c) is in the answer set of
the Datalog encoding iff it is in υ(t) of the answer stream of the LARS encoding. 2
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