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Introduction (1)

Quantified Boolean Formulas (QBF):
Existential (∃) / universal (∀) quantification of propositional variables.
Checking QBF satisfiability: PSPACE-complete.
QBF encodings: potentially more succinct than propositional logic.

Progress in QBF Reasoning:
Theory: proof systems (foundations of solver implementations).
Practice: solving, preprocessing.

Example
Syntax:

QBF ψ := Π.φ in prenex conjunctive normal form (PCNF).
ψ = ∀u∃x .︸ ︷︷ ︸

quantifier prefix

(ū ∨ x) ∧ (u ∨ x̄)︸ ︷︷ ︸
propositional CNF

.
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Introduction (2)
Example
Syntax:

QBF ψ := Q̂.φ in prenex conjunctive normal form (PCNF).
ψ = ∀u∃x .︸ ︷︷ ︸

quantifier prefix

(ū ∨ x) ∧ (u ∨ x̄)︸ ︷︷ ︸
propositional CNF

.

Semantics (recursive):
Assign variables in prefix ordering, recurse on simplified formula ψ[A]
under current assignment A.
Base cases: ⊥ is unsatisfiable, > is satisfiable.
∀u.ψ is satisfiable iff ψ[u/⊥] and ψ[u/>] are satisfiable.
∃x .ψ is satisfiable iff ψ[x/⊥] or ψ[x/>] is satisfiable.

PCNF ψ above is satisfiable:
ψ[u/⊥] = ∃x .(x̄) is satisfiable by setting x to ⊥.
ψ[u/>] = ∃x .(x) is satisfiable by setting x to >.
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Introduction (3)

Quantifier Alternations in PCNFs:
A PCNF Q1B1Q2B2 . . .QnBn. φ has n ≥ 1 quantifier blocks QiBi .
QiBi : sets Bi of variables, quantifiers Qi ∈ {∀, ∃} with Qi 6= Qi+1.
A PCNFs with n quantifier blocks has n − 1 quantifier alternations.

Polynomial Hierarchy (PH): cf. [MS72, Sto76, Wra76]
Framework to describe the complexity of problems beyond NP.
Satisfiability problem of a given PCNF is located in PH.

Proposition (cf. [BB09, MS72, Sto76, Wra76])
Let ψ := Q1B1 . . .QnBn. φ be a PCNF with k ≥ 0 alternations.
Q1 = ∃: satisfiability problem of ψ is ΣP

k+1-complete.
Q1 = ∀: satisfiability problem of ψ is ΠP

k+1-complete.
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Introduction (4)
Class Prefix Pattern Problems (e.g.)

ΣP
1 = NP ∃B1.φ Checking prop. logic satisfiability

ΠP
1 = co-NP ∀B1.φ Checking prop. logic validity

ΣP
2 ∃B1∀B2.φ MUS membership testing [JS11,

Lib05], encodings of conformant
planning [Rin07], ASP-related
problems [FR05], abstract argu-
mentation [CDG+15]

ΠP
2 ∀B1∃B2.φ

...
PSPACE Q1B1 . . .QnBn.φ

(n depending on
problem instance)

LTL model checking [SC85], NFA
language inclusion, games [Sch78]
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Introduction (5): Solving Paradigms

1 Expansion [AB02, Bie04]:
RAReQS [JKMSC16], Ijtihad [BBSH+18], Rev-Qfun [Jan18],
DynQBF [CW17].

2 QDPLL (backtracking search) [CGS98]:
GhostQ [JKMSC16, KSGC10].

3 Nested SAT solving:
QSTS [BJT16a, BJT16b].

4 Clause selection and clausal abstraction:
QESTO [JM15b], CAQE [RT15, Ten17].

5 Backtracking search with learning (QCDCL) [GNT06, Let02, ZM02b]:
DepQBF [LE17], Qute [PSS17].

6 Hybrid approach (expansion, QCDCL):
Heretic [BBSH+18] (applies Ijtihad and DepQBF).

Theory of (orthogonal) proof systems, e.g.: [BCJ15, JM15a, Ten17].
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Outline and Contributions

Progress in QBF Solving — Problems:
Largely driven by empirical evaluation.
Practically relevant problems: QBF encodings on low levels in PH.
Risk of convergence of research to few alternations, cf. [Hoo95].
Solver rankings by solved instances might not reflect diversity and
strength of available paradigms.
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Outline and Contributions

Our Contributions:
Study impact of quantifier alternations on solver performance.
Performance of paradigms varies wrt. alternations.
More fine-grained analysis: highlighting diversity of paradigms.
Motivation for combining orthogonal paradigms (proof complexity).

⇒ Improve QBF solving for encodings at higher levels up to PSPACE.
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Solving Paradigm (1/2): Expansion

Example
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Expand u: copy CNF and replace y by fresh yd in copy of CNF.
ψ = ∃x , y , yd . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ)︸ ︷︷ ︸

u replaced by ⊥

∧ (x̄ ∨ yd ) ∧ (x ∨ ȳd ) ∧ (yd )︸ ︷︷ ︸
u replaced by >, y replaced by yd

Expansion of ∀-Variables: cf. [AB02, Bie04]
Idea: eliminate all universal variables by Shannon expansion [Sha49].
Replace Q̂∀x .φ by Q̂.(φ[x/⊥] ∧ φ[x/>]).
Duplicate existential variables inner to x [Bie04, BK07].
Finally, apply SAT solving to propositional formula.
Modern: counter example guided abstraction refinement (CEGAR).
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Solving Paradigm (2/2): Q-Resolution Calculus

Definition (Q-Resolution Rule)
C1 ∪ {p} C2 ∪ {p̄}

C1 ∪ C2

for all x ∈ Q̂ : {x , x̄} 6⊆ (C1 ∪ C2),
p̄ 6∈ C1, p 6∈ C2, and q(p) = ∃

Example
ψ = ∃x∀u∃y .(x) ∧ (x̄∨u∨y) ∧ (x̄∨u∨ȳ)

Traditional Q-resolution [BKF95].
Must resolve on ∃ pivots (cf. variant [VG12]).
Cf. stronger variants [ZM02a, BJ12].

(x̄∨u)

(x̄∨u∨y) (x̄∨u∨ȳ)

PCNF ψ is unsatisfiable iff empty clause ∅ can be derived.
Resolution-based QBF solvers: inspired by conflict-driven clause
learning (CDCL) and DPLL algorithm for SAT solving.
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Solving Paradigm (2/2): Q-Resolution Calculus

Definition (Reduction Rule)
C ∪ {l}

C
for all x ∈ Q̂ : {x , x̄} 6⊆ (C ∪ {l}), q(l) = ∀, and
l ′ < l for all l ′ ∈ C with q(l ′) = ∃

Example
ψ = ∃x∀u∃y .(x) ∧ (x̄∨u∨y) ∧ (x̄∨u∨ȳ)

Reduction removes “trailing” ∀-literals.
Local rule, applied to individual clauses.

∅

(x) (x̄)

(x̄∨u)

(x̄∨u∨y) (x̄∨u∨ȳ)

PCNF ψ is unsatisfiable iff empty clause ∅ can be derived.
Resolution-based QBF solvers: inspired by conflict-driven clause
learning (CDCL) and DPLL algorithm for SAT solving.
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Experiments (1)

Benchmark Set and Solvers:
QBFEVAL’17: 523 prenex CNF instances, 1800 CPU sec., 7 GB mem.
Focus: instances not solved in preprocessing by HQSpre [WRMB17].
Top-ranked solvers, based on orthogonal paradigms / proof systems.

Goals of Experimental Evaluation:
Typical solver rankings: by total number of solved instances.
Theory: numbers of alternations ≈ levels in polynomial hierarchy.
Performance analysis wrt. instances and their numbers of alternations.
How do different solving paradigms perform wrt. alternations?
Is there a single best approach that dominates all the others?
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Experiments (2): Alternation Bias

Table: Histograms of the benchmark sets illustrating the numbers of formulas
(#f) in classes given by the number of qblocks (#q).

#q #f
2 90
3 236
4–10 70
11–20 42
21– 85
2–3 326
4– 197

(a)

#q #f
2 70
3 145
4–10 26
11–20 30
21– 41
2–3 215
4– 97

(b)

#q #f
2 70
3 145
4–10 26
11–20 40
21– 31
2–3 215
4– 97

(c)

(a) 523 original benchmarks.
(b) 312 benchmarks filtered by HQSpre.
(c) 312 benchmarks preprocessed by HQSpre.
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Experiments (3): Overall Rankings

Table: Solvers and corresponding paradigms (P), solved instances (S),
unsatisfiable (⊥) and satisfiable ones (>), and uniquely solved instances.

Solver P S ⊥ > U
GhostQ 2 112 61 51 15
Rev-Qfun 1 110 58 52 6
CAQE 4 68 42 26 6
DepQBF 5 64 41 23 4
QSTS 3 56 34 22 3
RAReQS 1 50 34 16 1
Heretic 6 49 34 15 0
Qute 5 47 25 22 0
DynQBF 1 46 24 22 9
QESTO 4 45 30 15 0
Ijtihad 1 36 27 9 1

(a) Filtered instances.

Solver P S ⊥ > U
CAQE 4 114 65 49 6
RAReQS 1 103 63 40 3
QESTO 4 97 63 34 1
Rev-Qfun 1 90 57 33 6
Heretic 6 87 55 32 0
QSTS 3 72 46 26 1
DepQBF 5 72 44 28 5
Qute 5 70 42 28 2
Ijtihad 1 58 43 15 1
GhostQ 2 58 33 25 0
DynQBF 1 45 24 21 17
(b) Preprocessed instances.
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Experiments (4): Class-Based Analysis — Solvers

Table: Instances solved in classes by numbers of qblocks (#q) and numbers of
formulas in each class (#f). Only class winners (bold face) are shown, paradigms
(P:) are indicated in the first row.

P: 2 1 4 5

#q #f Gh
os
tQ

Re
v-
Q
fu
n

CA
Q
E

D
ep
Q
BF

2 70 36 18 5 7
3 145 62 71 33 23
4–10 26 3 5 7 7
11–20 30 3 5 8 16
21– 41 8 11 15 11
2–3 215 98 89 38 30
4– 97 14 21 30 34

(a) Filtered instances.

P: 4 6 5 1

#q #f CA
Q
E

H
er
et
ic

D
ep
Q
BF

D
yn
Q
BF

2 70 18 15 15 24
3 145 67 42 24 14
4–10 26 6 10 7 5
11–20 40 14 15 20 2
21– 31 9 5 6 0
2–3 215 85 57 39 38
4– 97 29 30 33 7

(b) Preprocessed instances.
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Experiments (5): Class-Based Analysis — Paradigms

Table: Instances solved by solving paradigms 1 to 6 in classes by numbers of
qblocks (#q).

#q 1 2 3 4 5 6
2 28 36 9 6 8 2
3 85 62 27 36 40 23
4–10 9 3 1 9 8 5
11-20 8 3 7 8 16 9
21– 15 8 12 15 11 10
2–3 113 98 36 42 48 25
4– 32 14 20 32 35 24
2– 145 112 56 74 83 49

(a) Filtered instances.

#q 1 2 3 4 5 6
2 37 7 17 18 21 15
3 78 40 35 71 40 42
4–10 10 1 2 13 7 10
11–20 17 6 13 15 21 15
21– 8 4 5 10 8 5
2–3 115 47 52 89 61 57
4– 35 11 20 38 36 30
2– 150 58 72 127 97 87

(b) Preprocessed instances.
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Experiments (6): Class-Based VBS Analysis — Solvers

Table: Instances solved by the virtual best solver (VBS) in classes by number of
qblocks (#q), number of formulas (#f) in each class, and relative contribution
(%) of each solver to instances solved by the VBS.

#q #f VB
S

Gh
os
tQ

Re
v-
Q
fu
n

CA
Q
E

D
ep
Q
BF

Q
ST

S

RA
Re

Q
S

H
er
et
ic

Q
ut
e

D
yn
Q
BF

Q
ES

TO

Ijt
ih
ad

2 70 46 41.3 6.5 6.5 6.5 6.5 0.0 0.0 0.0 30.4 2.1 0.0
3 145 89 12.3 33.7 2.2 2.2 15.7 22.4 0.0 3.3 2.2 4.4 1.1
4–10 26 19 5.2 0.0 26.3 26.3 0.0 0.0 0.0 15.7 10.5 10.5 5.2
11-20 30 18 0.0 0.0 11.1 50.0 27.7 5.5 0.0 0.0 5.5 0.0 0.0
21– 41 21 4.7 14.2 19.0 9.5 28.5 14.2 0.0 0.0 9.5 0.0 0.0
2–3 215 135 22.2 24.4 3.7 3.7 12.5 14.8 0.0 2.2 11.8 3.7 0.7
4– 97 58 3.4 5.1 18.9 27.5 18.9 6.8 0.0 5.1 8.6 3.4 1.7
2– 312 193 16.5 18.6 8.2 10.8 14.5 12.4 0.0 3.1 10.8 3.6 1.0

(a) Filtered instances.
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Experiments (6): Class-Based VBS Analysis — Solvers

Table: Instances solved by the virtual best solver (VBS) in classes by number of
qblocks (#q), number of formulas (#f) in each class, and relative contribution
(%) of each solver to instances solved by the VBS.

#q #f VB
S

CA
Q
E

RA
Re

Q
S

Q
ES

TO

Re
v-
Q
fu
n

H
er
et
ic

Q
ST

S

D
ep
Q
BF

Q
ut
e

Ijt
ih
ad

Gh
os
tQ

D
yn
Q
BF

2 70 40 7.5 17.5 2.5 7.5 2.5 10.0 10.0 0.0 0.0 2.5 40.0
3 145 87 9.1 40.2 8.0 12.6 1.1 6.8 0.0 8.0 3.4 4.5 5.7
4–10 26 20 25.0 10.0 15.0 5.0 0.0 0.0 25.0 5.0 5.0 0.0 10.0
11-20 40 26 3.8 19.2 7.6 0.0 7.6 26.9 30.7 0.0 0.0 0.0 3.8
21– 31 11 9.0 27.2 9.0 9.0 0.0 27.2 9.0 9.0 0.0 0.0 0.0
2–3 215 127 8.6 33.0 6.2 11.0 1.5 7.8 3.1 5.5 2.3 3.9 16.5
4– 97 57 12.2 17.5 10.5 3.5 3.5 17.5 24.5 3.5 1.7 0.0 5.2
2– 312 184 9.7 28.2 7.6 8.6 2.1 10.8 9.7 4.8 2.1 2.7 13.0

(a) Preprocessed instances.
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Experiments (7): Class-Based VBS Analysis — Paradigms

Table: Instances solved by the virtual best solver (VBS) in classes by number of
qblocks (#q), number of formulas (#f) in each class, and relative contribution
(%) of solving paradigms to instances solved by the VBS.

#q #f VBS 1 2 3 4 5 6
2 70 46 36.9 41.3 6.5 8.6 6.5 0.0
3 145 89 59.5 12.3 15.7 6.7 5.6 0.0
4–10 26 19 15.7 5.2 0.0 36.8 42.1 0.0
11–20 30 18 11.1 0.0 27.7 11.1 50.0 0.0
21– 41 21 38.0 4.7 28.5 19.0 9.5 0.0
2–3 215 135 51.8 22.2 12.5 7.4 5.9 0.0
4– 97 58 22.4 3.4 18.9 22.4 32.7 0.0
2– 312 193 43.0 16.5 14.5 11.9 13.9 0.0

(a) Filtered instances.
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Experiments (7): Class-Based VBS Analysis — Paradigms

Table: Instances solved by the virtual best solver (VBS) in classes by number of
qblocks (#q), number of formulas (#f) in each class, and relative contribution
(%) of solving paradigms to instances solved by the VBS.

#q #f VBS 1 2 3 4 5 6
2 70 40 65.0 2.5 10.0 10.0 10.0 2.5
3 145 87 62.0 4.5 6.8 17.2 8.0 1.1
4–10 26 20 30.0 0.0 0.0 40.0 30.0 0.0
11–20 40 26 23.0 0.0 26.9 11.5 30.7 7.6
21– 31 11 36.3 0.0 27.2 18.1 18.1 0.0
2–3 215 127 62.9 3.9 7.8 14.9 8.6 1.5
4– 97 57 28.0 0.0 17.5 22.8 28.0 3.5
2– 312 184 52.1 2.7 10.8 17.3 14.6 2.1

(a) Preprocessed instances.
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Summary

QBF Solving:
Different approaches, empirically-driven development of QBF tools.
Power of different approaches often not reflected in overall rankings.
Majority of available QBF benchmarks: problems from low PH levels.

Our Empirical Results:
More fine-grained picture of solver performance.
Highlighting different strengths in instance classes by alternations.
VBS: large potential for combining different approaches.

Future Work and Open Problems:
Risk of convergence of research to certain approaches / formulas.
Proof complexity and alternations, cf. [BHP17, BBH18, Che16].

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 16 / 16



References

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 17 / 16



References I

[AB02] Abdelwaheb Ayari and David A. Basin.
QUBOS: Deciding Quantified Boolean Logic Using
Propositional Satisfiability Solvers.
In FMCAD, volume 2517 of LNCS, pages 187–201. Springer,
2002.

[BB09] Hans Kleine Büning and Uwe Bubeck.
Theory of Quantified Boolean Formulas.
In Handbook of Satisfiability, volume 185 of FAIA, pages
735–760. IOS Press, 2009.

[BBH18] Olaf Beyersdorff, Joshua Blinkhorn, and Luke Hinde.
Size, Cost and Capacity: A Semantic Technique for Hard
Random QBFs.
In ITCS, volume 94 of LIPIcs, pages 9:1–9:18. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 17 / 16



References II

[BBSH+18] Roderick Bloem, Nicolas Braud-Santoni, Vedad Hadzic, Uwe
Egly, Florian Lonsing, and Martina Seidl.
Expansion-Based QBF Solving Without Recursion.
In FMCAD. IEEE, 2018.

[BCJ15] Olaf Beyersdorff, Leroy Chew, and Mikolás Janota.
Proof Complexity of Resolution-based QBF Calculi.
In STACS, volume 30 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 76–89. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

[BHP17] Olaf Beyersdorff, Luke Hinde, and Ján Pich.
Reasons for Hardness in QBF Proof Systems.
Electronic Colloquium on Computational Complexity (ECCC),
24:44, 2017.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 18 / 16



References III

[Bie04] Armin Biere.
Resolve and Expand.
In SAT, volume 3542 of LNCS, pages 59–70. Springer, 2004.

[BJ12] Valeriy Balabanov and Jie-Hong R. Jiang.
Unified QBF certification and its applications.
Formal Methods in System Design, 41(1):45–65, 2012.

[BJT16a] Bart Bogaerts, Tomi Janhunen, and Shahab Tasharrofi.
SAT-to-SAT in QBFEval 2016.
In QBF Workshop, volume 1719 of CEUR Workshop
Proceedings, pages 63–70. CEUR-WS.org, 2016.

[BJT16b] Bart Bogaerts, Tomi Janhunen, and Shahab Tasharrofi.
Solving QBF Instances with Nested SAT Solvers.
In Beyond NP Workshop 2016 at AAAI-16, 2016.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 19 / 16



References IV

[BK07] Uwe Bubeck and Hans Kleine Büning.
Bounded Universal Expansion for Preprocessing QBF.
In SAT, volume 4501 of LNCS, pages 244–257. Springer,
2007.

[BKF95] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel.
Resolution for Quantified Boolean Formulas.
Inf. Comput., 117(1):12–18, 1995.

[CDG+15] Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl,
Johannes Peter Wallner, and Stefan Woltran.
Methods for solving reasoning problems in abstract
argumentation - A survey.
Artif. Intell., 220:28–63, 2015.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 20 / 16



References V

[CGS98] Marco Cadoli, Andrea Giovanardi, and Marco Schaerf.
An Algorithm to Evaluate Quantified Boolean Formulae.
In AAAI, pages 262–267. AAAI Press / The MIT Press, 1998.

[Che16] Hubie Chen.
Proof Complexity Modulo the Polynomial Hierarchy:
Understanding Alternation as a Source of Hardness.
In ICALP, volume 55 of LIPIcs, pages 94:1–94:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[CW17] Günther Charwat and Stefan Woltran.
Expansion-based QBF Solving on Tree Decompositions.
In RCRA Workshop, volume 2011 of CEUR Workshop
Proceedings, pages 16–26. CEUR-WS.org, 2017.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 21 / 16



References VI

[FR05] Wolfgang Faber and Francesco Ricca.
Solving Hard ASP Programs Efficiently.
In LPNMR, volume 3662 of LNCS, pages 240–252. Springer,
2005.

[GNT06] Enrico Giunchiglia, Massimo Narizzano, and Armando
Tacchella.
Clause/Term Resolution and Learning in the Evaluation of
Quantified Boolean Formulas.
JAIR, 26:371–416, 2006.

[Hoo95] John N. Hooker.
Testing heuristics: We have it all wrong.
J. Heuristics, 1(1):33–42, 1995.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 22 / 16



References VII

[Jan18] Mikolás Janota.
Towards Generalization in QBF Solving via Machine Learning.

In AAAI. AAAI Press, 2018.
[JKMSC16] Mikoláš Janota, William Klieber, Joao Marques-Silva, and

Edmund Clarke.
Solving QBF with counterexample guided refinement.
Artificial Intelligence, 234:1–25, 2016.

[JM15a] Mikolás Janota and Joao Marques-Silva.
Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci., 577:25–42, 2015.

[JM15b] Mikolás Janota and Joao Marques-Silva.
Solving QBF by Clause Selection.
In IJCAI, pages 325–331. AAAI Press, 2015.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 23 / 16



References VIII

[JS11] Mikolás Janota and João P. Marques Silva.
On Deciding MUS Membership with QBF.
In CP, volume 6876 of LNCS, pages 414–428. Springer, 2011.

[KSGC10] William Klieber, Samir Sapra, Sicun Gao, and Edmund M.
Clarke.
A Non-prenex, Non-clausal QBF Solver with Game-State
Learning.
In SAT, volume 6175 of LNCS, pages 128–142. Springer,
2010.

[LE17] Florian Lonsing and Uwe Egly.
DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional
QCDCL.
In CADE, volume 10395 of LNCS, pages 371–384. Springer,
2017.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 24 / 16



References IX

[Let02] Reinhold Letz.
Lemma and Model Caching in Decision Procedures for
Quantified Boolean Formulas.
In TABLEAUX, volume 2381 of LNCS, pages 160–175.
Springer, 2002.

[Lib05] Paolo Liberatore.
Redundancy in logic I: CNF propositional formulae.
Artif. Intell., 163(2):203–232, 2005.

[MS72] Albert R. Meyer and Larry J. Stockmeyer.
The Equivalence Problem for Regular Expressions with
Squaring Requires Exponential Space.
In 13th Annual Symposium on Switching and Automata
Theory, pages 125–129. IEEE Computer Society, 1972.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 25 / 16



References X

[PSS17] Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider.
Dependency Learning for QBF.
In SAT, volume 10491 of LNCS, pages 298–313. Springer,
2017.

[Rin07] Jussi Rintanen.
Asymptotically Optimal Encodings of Conformant Planning in
QBF.
In AAAI, pages 1045–1050. AAAI Press, 2007.

[RT15] Markus N. Rabe and Leander Tentrup.
CAQE: A Certifying QBF Solver.
In FMCAD, pages 136–143. IEEE, 2015.

[SC85] A. Prasad Sistla and Edmund M. Clarke.
The Complexity of Propositional Linear Temporal Logics.
J. ACM, 32(3):733–749, 1985.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 26 / 16



References XI

[Sch78] Thomas J Schaefer.
On the Complexity of Some Two-Person Perfect-Information
Games.
Journal of Computer and System Sciences, 16(2):185–225,
1978.

[Sha49] Claude Elwood Shannon.
The Synthesis of Two-Terminal Switching Circuits.
Bell System Technical Journal, 28(1):59–98, 1949.

[Sto76] Larry J. Stockmeyer.
The Polynomial-Time Hierarchy.
Theor. Comput. Sci., 3(1):1–22, 1976.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 27 / 16



References XII

[Ten17] Leander Tentrup.
On Expansion and Resolution in CEGAR Based QBF Solving.
In CAV, volume 10427 of LNCS, pages 475–494. Springer,
2017.

[VG12] Allen Van Gelder.
Contributions to the Theory of Practical Quantified Boolean
Formula Solving.
In CP, volume 7514 of LNCS, pages 647–663. Springer, 2012.

[Wra76] Celia Wrathall.
Complete Sets and the Polynomial-Time Hierarchy.
Theor. Comput. Sci., 3(1):23–33, 1976.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 28 / 16



References XIII

[WRMB17] Ralf Wimmer, Sven Reimer, Paolo Marin, and Bernd Becker.
HQSpre - An Effective Preprocessor for QBF and DQBF.
In TACAS, volume 10205 of LNCS, pages 373–390. Springer,
2017.

[ZM02a] Lintao Zhang and Sharad Malik.
Conflict Driven Learning in a Quantified Boolean Satisfiability
Solver.
In ICCAD, pages 442–449. ACM / IEEE Computer Society,
2002.

[ZM02b] Lintao Zhang and Sharad Malik.
Towards a Symmetric Treatment of Satisfaction and Conflicts
in Quantified Boolean Formula Evaluation.
In CP, volume 2470 of LNCS, pages 200–215. Springer, 2002.

Lonsing and Egly (TU Wien) Evaluating QBF Solvers 29 / 16


