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Introduction (1)

Propositional Logic:
Formula φ over propositional variables, Boolean domain B = {>,⊥}.
Satisfiability problem (SAT): is φ satisfiable?
NP-completeness of SAT.
Modelling NP-complete problems in formal verification, AI, . . .
A SAT solver returns a model of φ or a proof that φ has no model.
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Introduction (2)

Success Story of SAT Solving:
Origins: backtracking algorithms in 1960s [DP60, DLL62].
Clause learning (CDCL): [SS96, SS99].
Efficient data structures and heuristics: [MMZ+01].
SAT solver exploit structure of formulas.
Despite intractability: many (industrial) applications.
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Introduction (3)

Problem Solving using SAT:
Problem encodings.
Preprocessing (simplification).
Solving.
Result checking (proofs).
Recent prominent example:
Boolean Pythagorean Triples
Problem [HKM16, HK17].
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RECENT PROGRESS IN automated reasoning and super-
computing gives rise to a new era of brute force.  
The game changer is “SAT,” a disruptive, brute-reasoning 
technology in industry and science. We illustrate its 
strength and potential via the proof of the Boolean 
Pythagorean Triples Problem, a long-standing open 
problem in Ramsey Theory. This 200TB proof has been 
constructed completely automatically—paradoxically, 
in an ingenious way. We welcome these bold new proofs 
emerging on the horizon, beyond human understanding—
both mathematics and industry need them.

Many relevant search problems, 
from artificial intelligence to combi-
natorics, explore large search spaces to 
deter mine the presence or absence of a 
certain object. These problems are hard 
due to combinatorial explosion, and 
have traditionally been called infea-
sible. The brute-force method, which 
at least implicitly explores all possibili-
ties, is a general approach to systemati-
cally search through such spaces.

Brute force has long been regarded 
as suitable only for simple problems. 
This has changed in the last two de-
cades, due to the progress in Satisfi-
ability (SAT) solving, which by adding 
brute reason renders brute force into 
a powerful approach to deal with many 
problems easily and automatically. 
Search spaces with far more possibili-
ties than the number of particles in the 
universe may be completely explored.

SAT solving determines whether a 
formula in propositional logic has a 
solution, and its brute reasoning acts 
in a blind and uninformed way—as a 
feature, not a bug. We focus on apply-
ing SAT to mathematics, as a system-
atic development of the traditional 
method of proof by exhaustion.

Can we trust the result of run-
ning complicated algorithms on 
many mac hines for a long time? The 
strongest solution is to provide a 
proof, which is also needed to show 
correctness of highly complex sys-
tems, which are everywhere, from 
finance to health care to aviation. 

The 
Science 
of Brute 
Force

DOI:10.1145/3107239

Mathematics solves problems by pen and 
paper. CS helps us to go far beyond that.

BY MARIJN J.H. HEULE AND OLIVER KULLMANN

 key insights

 ˽ Long-standing open problems in 
mathematics can now be solved 
completely automatically resulting in 
clever though potentially gigantic proofs.

 ˽ Our time requires answers to hard 
questions regarding safety and security. 
In these cases knowledge is more 
important than understanding as long as 
we can trust the answers.

 ˽ Powerful SAT-solving heuristics facilitate 
linear speedups even when using 
thousands of cores. Combined with the 
ever-increasing capabilities of high-
performance computing clusters they 
enable solving challenging problems.
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Introduction (4)

Quantified Boolean Formulas (QBF):
Propositional logic extended by existential (∃) / universal (∀)
quantification of propositional variables.
Checking QBF satisfiability: PSPACE-complete.
Propositional satisfiability (SAT): NP-complete.
QBF encodings: potentially more succinct than propositional logic.

Example
QBF ψ := Q̂.φ in prenex conjunctive normal form (PCNF).
ψ = ∀u∃x .︸ ︷︷ ︸

quantifier prefix Q̂

(ū ∨ x) ∧ (u ∨ x̄)︸ ︷︷ ︸
propositional CNF φ

.
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Introduction (5)

Quantifier Alternations in PCNFs:
A PCNF Q1B1Q2B2 . . .QnBn. φ has n ≥ 1 quantifier blocks QiBi .
QiBi : sets Bi of variables, quantifiers Qi ∈ {∀, ∃} with Qi 6= Qi+1.
A PCNFs with n quantifier blocks has n − 1 quantifier alternations.

Example
PCNF ψ = ∃x1, x2∀u1, u2∃x3.φ.
ψ has two quantifier alternations.
Quantifier blocks ∃B1, ∀B2, ∃B3.
B1 : {x1, x2}, B2 : {u1, u2}, B3 : {x3}.
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Introduction (5)

Polynomial Hierarchy (PH): cf. [MS72, Sto76, Wra76]
Framework to describe the complexity of problems beyond NP.
Satisfiability problem of a given PCNF is located in PH.

Proposition (cf. [BB09, MS72, Sto76, Wra76])
Let ψ := Q1B1 . . .QnBn. φ be a PCNF with k ≥ 0 alternations.
Q1 = ∃: satisfiability problem of ψ is ΣP

k+1-complete.
Q1 = ∀: satisfiability problem of ψ is ΠP

k+1-complete.
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Introduction (6): Encoding Problems as QBFs
Class Prefix Pattern Problems (e.g.)

ΣP
1 = NP ∃B1.φ Checking prop. logic satisfiability

ΠP
1 = co-NP ∀B1.φ Checking prop. logic validity

ΣP
2 ∃B1∀B2.φ MUS membership testing [JS11,

Lib05], encodings of conformant
planning [Rin07], ASP-related
problems [FR05], abstract argu-
mentation [CDG+15]

ΠP
2 ∀B1∃B2.φ

...
PSPACE Q1B1 . . .QnBn.φ

(n depending on
problem instance)

LTL model checking [SC85], NFA
language inclusion, games [Sch78]
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Introduction (7): Compact QBF Encodings

Example (Bounded Model Checking (BMC) [BCCZ99])
System S, states of S as a state graph, invariant P.
Goal: search for a counterexample to P of bounded length k.
Counterexample: path to reachable state sk where P violated.

Initial Bad

s0 s1 . . . sk−1 sk
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Introduction (7): Compact QBF Encodings

Example (Bounded Model Checking (BMC) [BCCZ99])
System S, states of S as a state graph, invariant P.
Goal: search for a counterexample to P of bounded length k.
Counterexample: path to reachable state sk where P violated.

I(s0) B(sk)

s0 s1 . . . sk−1 skT (s0, s1) T (. . .) T (. . .) T (sk−1, sk)

SAT Encoding:
Initial state predicate I(s), transition relation T (s, s ′).
“Bad state” predicate B(s): s is a state where P is violated.
Error trace of length k: I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ B(sk).
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Introduction (7): Compact QBF Encodings

Example (Bounded Model Checking (BMC) [BCCZ99])
System S, states of S as a state graph, invariant P.
Goal: search for a counterexample to P of bounded length k.
Counterexample: path to reachable state sk where P violated.

I(s0) B(sk)

s0 s1 . . . sk−1 skT (s0, s1) T (. . .) T (. . .) T (sk−1, sk)

QBF Encoding: [BM08, JB07]
∃s0, . . . , sk∀x , x ′.
I(s0) ∧ B(sk) ∧

[[∨k−1
i=0 ((x = si) ∧ (x ′ = si+1))

]
→ T (x , x ′)

]
.

Only one copy of T in contrast to k copies in SAT encoding.
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Introduction (8): Typical QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates
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Introduction (9): Progress in QBF Research

The Beginning of QBF Solving:
1998: backtracking DPLL for QBF [CGS98].
2002: clause learning for QBF (proofs) [GNT02, Let02, ZM02a].
2002: expansion (elimination) of variables [AB02].

⇒ compared to SAT (1960s), QBF still is a young field of research!
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Introduction (9): Progress in QBF Research

Maturity of QBF Technology:
QBF not yet widely applied at large scale.
Higher complexity (PSPACE) comes at a cost.

Increased Interest in QBF:
QBF proof systems: theoretical frameworks of solving techniques.
CDCL (clause learning) and expansion: orthogonal solving approaches.
QBF solving by counterexample guided abstraction refinement
(CEGAR) [CGJ+03, JM15b, JKMSC16, RT15].

QBF Research Community:
QBFLIB: http://www.qbflib.org/index.php

QBFEVAL’17: http://www.qbflib.org/qbfeval17.php
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Introduction (10): Motivating QBF Applications

Synthesis and Realizability of Distributed Systems:

[GT14] Adria Gascón, Ashish Tiwari: A Synthesized Algorithm for
Interactive Consistency. NASA Formal Methods 2014: 270-284.

[FT15] Bernd Finkbeiner, Leander Tentrup: Detecting Unrealizability of
Distributed Fault-tolerant Systems. Logical Methods in Computer Science
11(3) (2015).

[FFRT17] Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, Leander
Tentrup: Encodings of Bounded Synthesis. TACAS (1) 2017: 354-370.
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Introduction (10): Motivating QBF Applications

Solving Dependency Quantified Boolean Formulas (NEXPTIME):

[FT14] Bernd Finkbeiner, Leander Tentrup: Fast DQBF Refutation. SAT
2014: 243-251.
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Introduction (10): Motivating QBF Applications

Formal Verification and Synthesis:

[HSM+14] Tamir Heyman, Dan Smith, Yogesh Mahajan, Lance Leong,
Husam Abu-Haimed: Dominant Controllability Check Using QBF-Solver
and Netlist Optimizer. SAT 2014: 227-242.

[CHR16] Chih-Hong Cheng, Yassine Hamza, Harald Ruess: Structural
Synthesis for GXW Specifications. CAV 2016.
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Introduction (11): Focus of Tutorial

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

Our Focus: Search-Based QBF Solving.
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Outline of Tutorial

Preliminaries:
Brief recapitulation: propositional logic.
QBF syntax and semantics.

From backtracking search to modern search based QBF solving:
Basic backtracking approach.
Better assignment generation.
Backjumping.
Clause learning and Q-resolution.
Cube learning.

QBF proofs and certificates.
Preprocessing: blocked clause elimination (hands-on session).
Expansion-based QBF solving.
Experiments.
Summary and conclusion.
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Propositional Logic (1)

Definition (Basic Definitions)
Boolean domain B = {>,⊥}: truth values “true” and “false”.
Boolean variables Vars = {x , y , . . .} (arbitrarily many but finite).
Assignment A : Vars → B
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Propositional Logic (1)

Definition (Propositional Formulas (PF))
> and ⊥ are PFs.
For propositional variables Vars, (x) where x ∈ Vars is a PF.
If ψ is a PF then ¬(ψ) is a PF.
To save space in notation, we also write x̄ instead of ¬x .
If ψ1 and ψ2 are PFs then (ψ1 ◦ ψ2) is a PF, ◦ ∈ {∧,∨,→,↔}.

Example

ψ := (y ∧ z)→ ¬(x)

→

∧

y z

¬

x
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Propositional Logic (1)

Definition (Conjunctive Normal Form (CNF))
A literal l is a variable x or its negation x̄ .
A clause C = (l1 ∨ . . . ∨ lm) is a disjunction over literals.
A formula is in CNF if it consists of a conjunction of clauses.
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Propositional Logic (2)

Definition (CNF Semantics)
Given a CNF φ and an assignment A to the variables in φ.
φ[A]: replace variables x in φ by > (⊥) if A(x) = > (A(x) = ⊥).
We write A := {x} if A(x) = > and A := {x̄} if A(x) = ⊥.
CNF φ is satisfiable iff there exists A such that φ[A] = >. Otherwise,
φ is unsatisfiable.

Example
φ := (x ∨ ȳ) ∧ (x̄ ∨ y).
Models M and M ′ of φ:

M := {x , y} where M(x) = M(y) = >.
M ′ := {x̄ , ȳ} where M ′(x) = M ′(y) = ⊥.
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Syntax (1)
QBFs as Quantified Circuits:
> and ⊥ are QBFs.
For propositional variables Vars, (x) where x ∈ Vars is a QBF.
If ψ is a QBF then ¬(ψ) is a QBF.
If ψ1 and ψ2 are QBFs then (ψ1 ◦ ψ2) is a QBF, ◦ ∈ {∧,∨,→,↔}.
If ψ is a QBF and x ∈ Vars(ψ), then ∀x .(ψ) and ∃x .(ψ) are QBFs.

Example

ψ := (∀z .(∃y .(y ∧ z)))→ ¬(∀x .(x))

→

∀z

∃y

∧

y z

¬

∀x

x
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Syntax (1)

QBFs in Prenex CNF: ψ := Q̂.φ
Quantifier prefix Q̂ = Q1B1 . . .QnBn, Qi ∈ {∀, ∃}, Qi 6= Qj ,
Bi ⊆ Vars, (Bi ∩ Bj) = ∅.
Linear ordering of variables: xi < xj iff xi ∈ Bi , xj ∈ Bj , and i < j .
Quantifier-free CNF φ over propositional variables xi .
Assume: φ does not contain free variables, all xi in Q̂ appear in φ.

Example
PCNF ψ = ∀u∃x .(ū ∨ x) ∧ (u ∨ x̄).
Linear ordering: u < x .
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Syntax (2)

Example (QDIMACS Format)
∃x1, x3, x4∀y5∃x2.
(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Extension of DIMACS format used in SAT solving.
Literals of variables encoded as signed integers.
One quantifier block per line, terminated by zero.
“a” labels ∀, “e” labels ∃.
One clause per line, terminated by zero.

p cnf 5 4
e 1 3 4 0
a 5 0
e 2 0
-1 2 0
3 5 -2 0
4 -5 -2 0
-3 -4 0

QDIMACS format: http://www.qbflib.org/qdimacs.html
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Semantics (1)

Recursive Definition:
Assume that a QBF does not contain free variables.
The QBF ⊥ is unsatisfiable, the QBF > is satisfiable.
The QBF ¬(ψ) is satisfiable iff the QBF ψ is unsatisfiable.
The QBF ψ1 ∧ ψ2 is satisfiable iff ψ1 and ψ2 are satisfiable.
The QBF ψ1 ∨ ψ2 is satisfiable iff ψ1 or ψ2 is satisfiable.
The QBF ∀x .(ψ) is satisfiable iff ψ[¬x ] and ψ[x ] are satisfiable.
The QBF ψ[¬x ] (ψ[x ]) results from ψ by replacing x in ψ by ⊥ (>).
The QBF ∃x .(ψ) is satisfiable iff ψ[¬x ] or ψ[x ] is satisfiable.

Definition
The QBFs ψ and ψ′ are satisfiability-equivalent (ψ ≡sat ψ

′) iff ψ is
satisfiable whenever ψ′ is satisfiable.
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Semantics (1)

Example
Observe: recursive evaluation assigns variables in prefix ordering.

The PCNF ψ = ∀x∃y .(x ∨ ȳ) ∧ (x̄ ∨ y) is satisfiable if

(1) ψ[x ] = ∃y .(y) and
(2) ψ[x̄ ] = ∃y .(ȳ) are satisfiable.

(1) ψ[x ] = ∃y .(y) is satisfiable since ψ[x , y ] = > is satisfiable.
(2) ψ[x̄ ] = ∃y .(ȳ) is satisfiable since ψ[x̄ , ȳ ] = > is satisfiable.
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Semantics (1)

Example
Observe: recursive evaluation assigns variables in prefix ordering.

The PCNF ψ = ∃y∀x .(x ∨ ȳ) ∧ (x̄ ∨ y) is unsatisfiable because neither

(1) ψ[y ] = ∀x .(x) nor
(2) ψ[ȳ ] = ∀x .(x̄) is satisfiable.

(1) ψ[y ] = ∀x .(x) is unsatisfiable since ψ[y , x̄ ] is unsatisfiable.
(2) ψ[ȳ ] = ∀x .(x̄) is unsatisfiable since ψ[ȳ , x ] is unsatisfiable.
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Semantics (2)

Game-Based View:
Player P∃ (P∀) assigns existential (universal) variables.
Goal: P∃ (P∀) wants to satisfy (falsify) the formula.
Players pick variables from left to right wrt. quantifier ordering.
QBF ψ is satisfiable (unsatisfiable) iff P∃ (P∀) has a winning strategy.
Winning strategy: P∃ (P∀) can satisfy (falsify) the formula regardless
of opponent’s choice of assignments.
Close relation between winning strategies and QBF certificates.

Example
ψ = ∀x∃y .(x ∨ ȳ) ∧ (x̄ ∨ y).

P∃ wins by setting y to the same value as x .
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Backtracking Search

DPLL algorithm [DLL62] for QBF: QDPLL [CGS98, CSGG02].
Chronological backtracking (QBF semantics), nonrecursive in practice.

bool qdpll (PCNF Q{x}ψ, Assignment A)
/* 1. Simplify under given assignment. */

ψ′ := simplify(Q{x}ψ[A]);
/* 2. Check base cases. */

if (ψ′ == ⊥)
return false;

if (ψ′ == >)
return true;

/* 3. Decision making, backtracking. */
if (Q == ∃)

return qdpll (ψ′, A ∪ {¬x}) ||
qdpll (ψ′, A ∪ {x});

if (Q == ∀)
return qdpll (ψ′, A ∪ {¬x}) &&

qdpll (ψ′, A ∪ {x});
Florian Lonsing (TU Wien) QBF Solving 19 / 84



Backtracking Search and Recursive Semantics

Example (continued)
The PCNF ψ = ∀x∃y .(x ∨ ȳ) ∧ (x̄ ∨ y) is satisfiable:

Assign x : ψ[x ] = ∃y .(y)
Assign ȳ : ψ[x , ȳ ] = ⊥ unsatisfiable.
Backtrack, assign y : ψ[x , y ] = > satisfiable.

One subcase of ∀x completed.
Assign x̄ : ψ[x̄ ] = ∃y .(ȳ)

Assign y : ψ[x̄ , y ] = ⊥ unsatisfiable.
Backtrack, assign ȳ : ψ[x̄ , ȳ ] = > satisfiable.
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Backtracking Search: Abstract Workflow

Extend
Assignment A

Subcase ψ[A]
Solved?

Backtracking
Analyze:

Open Subcases?
UNSAT/

SAT

PCNF ψ

A = ∅

A′ ⊂ A, A := A′

YES NO

NO

YES

Assignment A extended tentatively (decision making, splitting).
Termination: no open subcases left, depending on quantifier type.
Backtracking: flipping of assignments depending on subcase.

⇒ refine workflow step by step.
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The Need for Better Assignment Generation

Example
ψ = ∀y5∃x1∀y2∃x3,x4.
(¬y5 ∨ x4)∧ (y5 ∨¬x4)∧ (x1 ∨ y2 ∨¬x4)∧ (¬x1 ∨ x3 ∨¬x4)∧ (¬y2 ∨¬x3).

Worst case: 25 branches to be
explored by backtracking
search.
However: with better
assignment generation,
exploring a single branch is
sufficient!
Goal: make assignments that
do not have to be flipped.

Search tree:
r

y5

x1

y2

x3

x4

⊥

¬x4

⊥

¬x3
.

.

.

¬y2

x3
.

.

.

¬x3
.

.

.

¬x1

y2
.

.

.

¬y2
.

.

.

¬y5
.

.

.
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Boolean Constraint Propagation for QBF (1/5)

Definition (Unit Literal Detection [CGS98])
Given a QBF ψ, a clause C ∈ ψ is unit iff C = (l) and q(l) = ∃.
The existential literal l in C is called a unit literal.
Unit literal detection UL(C) := {l} collects the assignment {l} from
the unit clause C = (l).
Unit literal detection on a QBF ψ: UL(ψ) :=

⋃
C∈ψ UL(C).

Example
ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).
Clause (x2) is unit: UL(ψ) = {x2}.

Florian Lonsing (TU Wien) QBF Solving 23 / 84



Boolean Constraint Propagation for QBF (2/5)

Definition (Pure Literal Detection [CGS98])
A literal l is pure in a QBF ψ if there are clauses which contain l but
no clauses which contain ¬l .
Pure literal detection PL(ψ) :=

⋃
{l ′} collects the assignment {l ′}

such that l is pure and l ′ := l if q(l) = ∃ and l ′ := ¬l if q(l) = ∀.
The variable of an existential (universal) pure literal is assigned so
that clauses are satisfied (not satisfied) by that assignment.

Example (continued)
ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).
The universal literal ¬y is pure: PL(ψ) = {y}.
ψ[y ] := ∃x1, x2.(x2) ∧ (¬x2) ∧ (x1).
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Boolean Constraint Propagation for QBF (3/5)

Definition (Universal Reduction [BKF95])
Given a clause C , universal reduction (UR) of C produces the clause

UR(C) := C \ {l ∈ C | q(l) = ∀,∀l ′ ∈ C with q(l ′) = ∃ : var(l ′) < var(l)}

where < is the linear variable ordering given by the quantifier prefix.

UR deletes locally “trailing” universal literals, i.e., shortens clauses.

Example (continued)
ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).
By UL: ψ[x2] := ∀y∃x1.(¬y) ∧ (¬y ∨ x1).
In ψ[x2]: UR((¬y)) = ∅.
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Boolean Constraint Propagation for QBF (4/5)

Definition
Boolean Constraint Propagation for QBF (QBCP):

Given a PCNF ψ and the empty assignment A = {}, i.e. ψ[A] = ψ.
1. Apply universal reduction (UR) to ψ[A].
2. Apply unit literal detection (UL) to ψ[A] to get new assignments.
3. Apply pure literal detection (PL) to ψ[A] to find new assignments.
Add assignments found by UL and PL to A, repeat steps 1-3.
Stop if A does not change anymore or if ψ[A] = > or ψ[A] = ⊥.
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Boolean Constraint Propagation for QBF (5/5)

Properties of QBCP:
QBCP takes a PCNF ψ and an assignment A and produces an
extended assignment A′ and a PCNF ψ′ = ψ[A′] by UL, PL, and UR.
Soundness: ψ ≡sat ψ

′ (satisfiability-equivalence).
No prefix ordering restriction: QBCP potentially assigns any variables.

QBCP in Practice:
Combine decision making and QBCP.
Successively apply QBCP after assigning some x as decision.
Backtracking: no need to flip assignments made in QBCP.
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QBCP Example

Example
ψ = ∀y5∃x1∀y2∃x3,x4.
(¬y5∨x4)∧(y5∨¬x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).
No simplifications of ψ by QBCP possible, make decision: A = {y5}.
ψ[y5] =
∃x1∀y2∃x3,x4.(x4) ∧ (x1 ∨ y2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬y2 ∨ ¬x3).
By UL: ψ[y5, x4] = ∃x1∀y2∃x3.(x1 ∨ y2) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
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Benefits of QBCP

Example
ψ = ∀y5∃x1∀y2∃x3,x4.
(¬y5 ∨ x4)∧ (y5 ∨¬x4)∧ (x1 ∨ y2 ∨¬x4)∧ (¬x1 ∨ x3 ∨¬x4)∧ (¬y2 ∨¬x3).

Worst case: 25 branches to be
explored by backtracking
search.
Only one branch explored.
One decision + QBCP.
Goal: integrate QBCP in
workflow for better assignment
generation.

Search tree:
r

y5

x1

y2

x3

x4

⊥

¬x4

⊥

¬x3
.

.

.

¬y2

x3
.

.

.

¬x3
.

.

.

¬x1

y2
.

.

.

¬y2
.

.

.

¬y5
.

.

.
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Backtracking Search: Previous Abstract Workflow

Extend
Assignment A

Subcase ψ[A]
Solved?

Backtracking
Analyze:

Open Subcases?
UNSAT/

SAT

PCNF ψ

A = ∅

A′ ⊂ A, A := A′

YES NO

NO

YES
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Backtracking Search: Refined Abstract Workflow

QBCP
Conflict/Solution

Detection:
ψ′ = ⊥ or ψ′ = ⊤?

Decision
Making

Backtracking
Analyze:

Open Subcases?
UNSAT/

SAT

PCNF ψ

A = ∅

YES NO

A′ ⊂ A, A := A′

A := A ∪ {l}

YES

NOψ′

QBCP influences assignment generation and detecting solved
subcases.
In the following, we focus on conflicts, i.e., unsatisfiable subcases.
Need better ways of analyzing open subcases.
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Implication Graphs (1/2)

Definition (Implication Graph (IG))
Let ψ be the original QBF.
Vertices: literals (assignments) in A made as decisions or by UL.
Special vertex ∅ denoting a clause C ∈ ψ such that C [A] = ⊥ by UR.
For assignments {l} by UL from a unit clause C [A]: the clause
ante(l) := C with C ∈ ψ is the antecedent clause of assignment {l}.
Define ante(∅) = C , for a clause C ∈ ψ such that C [A] = ⊥.
Edges: (x , y) ∈ E if y assigned by UL and literal ¬x ∈ ante(y).
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Implication Graphs (2/2)

Antecedent clauses in the original PCNF ψ are recorded.
Implication graphs are constructed on the fly during QBCP.
On the fly construction requires efficient data structures [GGN+04].
Conflict: assignment A such that QBCP on ψ[A] produces empty
clause ∅.
Conflict graph: implication graph containing empty clause ∅.
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Constructing IGs On The Fly: Example

Example (formula from above)
ψ = ∀y5∃x1∀y2∃x3,x4.
(¬y5 ∨ x4)∧ (y5 ∨¬x4)∧ (x1 ∨ y2 ∨¬x4)∧ (¬x1 ∨ x3 ∨¬x4)∧ (¬y2 ∨¬x3).

Make decision: A = {y5}.
ψ[y5] = ∃x1∀y2∃x3,x4.(x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).

Implication Graph:

y5

Antecedents:
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Example (formula from above)
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Constructing IGs On The Fly: Example

Example (formula from above)
ψ = ∀y5∃x1∀y2∃x3,x4.
(¬y5 ∨ x4)∧ (y5 ∨¬x4)∧ (x1 ∨ y2 ∨¬x4)∧ (¬x1 ∨ x3 ∨ ¬x4)∧ (¬y2 ∨¬x3).

By UL: ψ[y5, x4, y2, x1, x3] = ⊥.

Implication Graph:

y5 x4 x1 x3

Antecedents:
ante(x4) : (¬y5 ∨ x4)
ante(x1) : (x1 ∨ y2 ∨ ¬x4)
ante(x3) : (¬x1 ∨ x3 ∨ ¬x4)
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Constructing IGs On The Fly: Example

Example (formula from above)
ψ = ∀y5∃x1∀y2∃x3,x4.
(¬y5 ∨ x4)∧ (y5 ∨¬x4)∧ (x1 ∨ y2 ∨¬x4)∧ (¬x1 ∨ x3 ∨¬x4)∧ (¬y2 ∨ ¬x3).

By UL: ψ[y5, x4, y2, x1, x3] = ⊥.

Implication Graph:

y5 x4 x1 x3 ∅

Antecedents:
ante(x4) : (¬y5 ∨ x4)
ante(x1) : (x1 ∨ y2 ∨ ¬x4)
ante(x3) : (¬x1 ∨ x3 ∨ ¬x4)
ante(∅) : (¬y2 ∨ ¬x3)
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Decisions: Levelized Implication Graphs

Initially, the solver is at decision level L0.
Every decision increases the current level Li by one to get Li+1.
Assignments by QBCP are added to the current level Li .

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

No unit clauses present, level L0 empty.

L0 :
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Decisions: Levelized Implication Graphs

Initially, the solver is at decision level L0.
Every decision increases the current level Li by one to get Li+1.
Assignments by QBCP are added to the current level Li .

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Decisions on x1.
QBCP has no effect.

L0 :

L1 : x1
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Decisions: Levelized Implication Graphs

Initially, the solver is at decision level L0.
Every decision increases the current level Li by one to get Li+1.
Assignments by QBCP are added to the current level Li .

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Decisions on x1, x2.
QBCP has no effect.

L0 :

L1 : x1

L2 : x2
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Decisions: Levelized Implication Graphs

Initially, the solver is at decision level L0.
Every decision increases the current level Li by one to get Li+1.
Assignments by QBCP are added to the current level Li .

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Decisions on x1, x2, x3: A = {x1, x2, x3}.
By QBCP (UL,UR): conflict A = {x1, x2, x3, x4, x6} at level L3.

L0 :

L1 : x1

L2 : x2

L3 : x3 x4 x6 ∅
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Analyzing Open Subcases (1/2)

Assignments:
Represented as sequence A = {l1, l2, . . . , ln} of literals.
Assignments due to decision making and QBCP (UL, PL).
Literals li ∈ A are ordered chronologically as they were assigned.
Conflict: assignment A such that ψ[A] = ⊥ under QBCP.
Solution: assignment A such that ψ[A] = > under QBCP.

⇒ we focus on conflicts and unsatisfiable QBFs.
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Analyzing Open Subcases (2/2)

Chronological Backtracking:
Given a conflict A = {. . . , d , . . . , ln}, let d be the most-recent
unflipped existential decision.
No such d in A: formula solved.
Retract decision d and all later assignments: A′ = A \ {d , . . . , ln}.
Set the variable of d to the opposite value (flip): A′ = A′ ∪ {¬d}.
Continue with A = A′.

⇒ similar approach for solutions and satisfiable QBFs.
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Chronological Backtracking: Example (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Assume that φ contains further clauses.
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Chronological Backtracking: Example (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Decisions on x1, x2, x3: A = {x1, x2, x3}.
ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6) ∧ φ.
By QBCP (UL,UR): conflict A1 = {x1, x2, x3, x4, x6}.

Implication Graph of conflict A1:

L0 :

L1 : x1

L2 : x2

L3 : x3 x4 x6 ∅
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Chronological Backtracking: Example (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Flip most recent unflipped decision x3: A = {x1, x2,¬x3}.
ψ[x1, x2,¬x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6) ∧ φ.
Conflict A2 = {x1, x2,¬x3, x4, x6}, by UL,UR.

Implication Graph of conflict A2:

L0 :

L1 : x1

L2 : x2

L3 : ¬x3 x4 x6 ∅
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Chronological Backtracking: Example (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Flip most recent unflipped x2, decision on x3: A = {x1,¬x2, x3}.
ψ[x1,¬x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6) ∧ φ.
Conflict A3 = {x1,¬x2, x3, x4, x6} by UL,UR.

Implication Graph of conflict A3:

L0 :

L1 : x1

L2 : ¬x2

L3 : x3 x4 x6 ∅
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Chronological Backtracking: Example (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Flip most recent unflipped decision x3: A = {x1,¬x2,¬x3}.
ψ[x1,¬x2,¬x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6) ∧ φ.
Conflict A4 = {x1,¬x2,¬x3, x4, x6} by UL,UR.

Implication Graph of conflict A4:

L0 :

L1 : x1

L2 : ¬x2

L3 : ¬x3 x4 x6 ∅

Repeated assignments {x3, x4, x6}, {¬x3, x4, x6} in A1,A3 and A2,A4.
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Chronological Backtracking: Example (2/2)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Conflicts generated:
A1 = {x1, x2, x3, x4, x6}.
A2 = {x1, x2,¬x3, x4, x6}.
A3 = {x1,¬x2, x3, x4, x6}.
A4 = {x1,¬x2,¬x3, x4, x6}.
Same conflicting subtrees after flipping x2.
Decision x2 is irrelevant in this context.

r

x1

x2

x3

x4

x6

⊥

¬x3

x4

x6

⊥

¬x2

x3

x4

x6

⊥

¬x3

x4

x6

⊥

¬x1

. . .

Drawbacks of Chronological Backtracking:
Flipping variables which are irrelevant for the current conflict.
Repeating subassignments of previous conflicts: needless branching.
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Non-Chronological Backtracking: Backjumping (1/2)

Given: conflict A = {l1, l2, . . . , ln} and its implication graph (IG).
Start at node ∅ and traverse IG backwards towards decision nodes.
Compute conflict set (CS): collect all decisions di reachable from ∅.
CS := {d1, . . . , di−1, di , . . . , dk} where CS ⊆ A.

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.
Consider conflict A1 = {x1, x2, x3, x4, x6} with decisions x1,x2,x3.

CS := {x1, x3}.
L0 :

L1 : x1

L2 : x2

L3 : x3 x4 x6 ∅
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Non-Chronological Backtracking: Backjumping (1/2)

Let di ∈ CS be the most recent unflipped existential decision.
No such di : formula solved (i.e., unsatisfiable).
Decision di−1 ∈ CS was assigned before di most recently in CS.

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.
Consider conflict A1 = {x1, x2, x3, x4, x6} with decisions x1,x2,x3.

CS := {x1, x3}.
di−1 = x1, di = x3.

L0 :

L1 : x1

L2 : x2

L3 : x3 x4 x6 ∅
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Non-Chronological Backtracking: Backjumping (1/2)

Update A by retracting all assignments made after the level of di−1.
Flip value of di by making a new decision: A := A ∪ {¬di}.
Backjumping relies on a more fine-grained analysis of the IG.
To emulate chron. backtracking, let CS contain all decisions made.

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.
Consider conflict A1 = {x1, x2, x3, x4, x6} with decisions x1,x2,x3.

di−1 = x1, di = x3.
Retract {x2, x3, x4, x6} from A.
Flip x3, A ∪ {¬x3} = {x1,¬x3}.

L0 :

L1 : x1

L2 :¬x3
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Non-Chronological Backtracking: Backjumping (1/2)

Update A by retracting all assignments made after the level of di−1.
Flip value of di by making a new decision: A := A ∪ {¬di}.
Backjumping relies on a more fine-grained analysis of the IG.
To emulate chron. backtracking, let CS contain all decisions made.

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.
Consider conflict A1 = {x1, x2, x3, x4, x6} with decisions x1,x2,x3.

New conflict A = {x1,¬x3, x4, x6}.
CS := {x1,¬x3}, ¬x3 flipped already.
di = x1, retract entire A (no di−1).
Flip x1, A ∪ {¬x1} = {¬x1}.

L0 :

L1 : x1

L2 :¬x3 x4 x6 ∅
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Non-Chronological Backtracking: Backjumping (2/2)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Chronological backtracking:
r

x1

x2

x3

x4

x6

⊥

¬x3

x4

x6

⊥

¬x2

x3

x4

x6

⊥

¬x3

x4

x6

⊥

¬x1

. . .

Non-chronological backtracking:
r

x1

x2

x3

x4

x6

⊥

¬x3

x4

x6

⊥

¬x1

. . .

Backjumping potentially avoids irrelevant branches.
Similar approaches for satisfiable QBFs.
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Drawback of Backjumping

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Assume that the assignment tree on the
right is a subtree of a bigger tree.
Observation: every assignment A with
{x1, x4} ⊆ A is a conflict (under QBCP).
UL extends {x1, x4} to {x1, x4, x6}.
C := (¬x1 ∨ y5 ∨ ¬x6) is empty under
A := {x1, x4, x6} and QBCP.
Repeating {x1, x4} ⊂ A in other branches
falsifies the same clause C under QBCP.
Backjumping cannot avoid this problem.

. . .

. . .

x1

x2

x3

x4

x6

⊥

¬x3

x4

x6

⊥

¬x1

. . .
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Towards Conflict Driven Clause Learning (QCDCL)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

C := (¬x1 ∨ y5 ∨ ¬x6) is empty under A := {x1, x4, x6} and QBCP.
Repeating {x1, x4} ⊂ A falsifies the same clause C under QBCP.
Adding the new clause CL := (¬x1 ∨ ¬x4) to the given formula ψ
prevents repetition of subassignment {x1, x4}.
Assigning x1 (x4) to true triggers assignment of ¬x4 (¬x1) by UL.
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Towards Conflict Driven Clause Learning (QCDCL)

Clause Learning:
Adding new clauses CL to given PCNF by analyzing a conflict.
Learned clause prevents subassignments.
Related to CDCL for SAT solving.
CDCL: pioneered by solvers like GRASP or Chaff [SS99, MMZ+01].
Correctness requirement: Q̂.φ ≡sat Q̂.(φ ∧ CL)

⇒ deriving learned clauses by the Q-resolution calculus (QRES).
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Abstract Workflow: Adding Clause Learning

QBCP
Conflict/Solution

Detection:
ψ′ = ⊥ or ψ′ = ⊤?

Decision
Making

Backtracking
Analyze:

Open Subcases?
UNSAT/

SAT

PCNF ψ

A = ∅

YES NO

A′ ⊂ A, A := A′

A := A ∪ {l}

YES

NOψ′

Chronological backtracking and backjumping: suboptimal analysis of
open subcases.
Clause learning in QCDCL: stronger than backtracking/-jumping.
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Abstract Workflow: Adding Clause Learning

QBCP
Conflict Detection:

ψ′ = ⊥?

Decision

Making

Backtracking Clause Learning UNSAT

PCNF ψ

A = ∅

CL 6= ∅ CL = ∅

A′ ⊂ A, A := A′

A := A ∪ {l}

YES

NOψ′

For now, we focus on unsatisfiable PCNFs.
Learned clause CL derived by QRES based on implication graphs.
Formal foundation of clause learning: proof system QRES.
Termination and backtracking controlled by properties of CL.
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Q-Resolution (1/2)

Definition (Q-Resolution Calculus QRES, c.f. [BKF95])

Let ψ = Q̂.φ be a PCNF and C ,C1,C2 clauses.

C for all x ∈ Q̂ : {x , x̄} 6⊆ C and C ∈ φ (init)

C ∪ {l}
C

for all x ∈ Q̂ : {x , x̄} 6⊆ (C ∪ {l}), q(l) = ∀, and
l ′ < l for all l ′ ∈ C with q(l ′) = ∃ (red)

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

for all x ∈ Q̂ : {x , x̄} 6⊆ (C1 ∪ C2),
p̄ 6∈ C1, p 6∈ C2, and q(p) = ∃ (res)

Axiom init, universal reduction red , resolution res.
PCNF ψ is unsatisfiable iff empty clause ∅ can be derived by QRES.
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Q-Resolution (2/2)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3∨x4)∧(x3∨x4)∧(¬x4∨x6)∧(¬x1∨y5∨¬x6)∧φ.

Applying QRES:
Axiom init selects initial clauses.
Resolution on clauses by res using
existential pivots.
Reduction of trailing universal literals
from clauses by red .

(¬x1 ∨ ¬x4)

(¬x1 ∨ ¬x4 ∨ y5)

(¬x4 ∨ x6) (¬x1 ∨ y5 ∨ ¬x6)

For clauses CL derived from PCNF Q̂.φ by QRES:
Q̂.φ ≡sat Q̂.(φ ∧ CL).
QRES for clause learning: driven by conflicts and implication graphs.
Stronger, more flexible variants of QRES exist.
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QCDCL: Basic Idea (1/3)

Example (Clause Learning)
ψ = ∃x1, x3, x4∀y5∃x2.(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)
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QCDCL: Basic Idea (1/3)

Example (Clause Learning)
ψ = ∃x1, x3, x4∀y5∃x2.(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Make decision A = {x1}:
ψ[{x1}] = ∃x3, x4∀y5∃x2.(x2)∧ (x3∨ y5∨ x̄2)∧ (x4∨ ȳ5∨ x̄2)∧ (x̄3∨ x̄4)
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QCDCL: Basic Idea (1/3)

Example (Clause Learning)
ψ = ∃x1, x3, x4∀y5∃x2.(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Make decision A = {x1}:
ψ[{x1}] = ∃x3, x4∀y5∃x2.(x2)∧ (x3∨ y5∨ x̄2)∧ (x4∨ ȳ5∨ x̄2)∧ (x̄3∨ x̄4)
By UL: ψ[{x1, x2}] = ∃x3, x4∀y5.(x3 ∨ y5) ∧ (x4 ∨ ȳ5) ∧ (x̄3 ∨ x̄4).
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QCDCL: Basic Idea (1/3)

Example (Clause Learning)
ψ = ∃x1, x3, x4∀y5∃x2.(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Make decision A = {x1}:
ψ[{x1}] = ∃x3, x4∀y5∃x2.(x2)∧ (x3∨ y5∨ x̄2)∧ (x4∨ ȳ5∨ x̄2)∧ (x̄3∨ x̄4)
By UL: ψ[{x1, x2}] = ∃x3, x4∀y5.(x3 ∨ y5) ∧ (x4 ∨ ȳ5) ∧ (x̄3 ∨ x̄4).
By UR: ψ[{x1, x2}] = ∃x3, x4.(x3) ∧ (x4) ∧ (x̄3 ∨ x̄4)
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QCDCL: Basic Idea (1/3)

Example (Clause Learning)
ψ = ∃x1, x3, x4∀y5∃x2.(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Make decision A = {x1}:
ψ[{x1}] = ∃x3, x4∀y5∃x2.(x2)∧ (x3∨ y5∨ x̄2)∧ (x4∨ ȳ5∨ x̄2)∧ (x̄3∨ x̄4)
By UL: ψ[{x1, x2}] = ∃x3, x4∀y5.(x3 ∨ y5) ∧ (x4 ∨ ȳ5) ∧ (x̄3 ∨ x̄4).
By UR: ψ[{x1, x2}] = ∃x3, x4.(x3) ∧ (x4) ∧ (x̄3 ∨ x̄4)
By UL: ψ[{x1, x2, x3, x4}] = ⊥, clause (x̄3 ∨ x̄4) conflicting.
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QCDCL: Basic Idea (1/3)

Example (Clause Learning)
ψ = ∃x1, x3, x4∀y5∃x2.(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

Make decision A = {x1}:
ψ[{x1}] = ∃x3, x4∀y5∃x2.(x2)∧ (x3∨ y5∨ x̄2)∧ (x4∨ ȳ5∨ x̄2)∧ (x̄3∨ x̄4)
By UL: ψ[{x1, x2}] = ∃x3, x4∀y5.(x3 ∨ y5) ∧ (x4 ∨ ȳ5) ∧ (x̄3 ∨ x̄4).
By UR: ψ[{x1, x2}] = ∃x3, x4.(x3) ∧ (x4) ∧ (x̄3 ∨ x̄4)
By UL: ψ[{x1, x2, x3, x4}] = ⊥, clause (x̄3 ∨ x̄4) conflicting.

Implication graph G :
Li : x1 x2 x3 ∅

x4

Antecedent clauses:
ante(x2) : (x̄1 ∨ x2)
ante(x3) : (x3 ∨ y5 ∨ x̄2)
ante(x4) : (x4 ∨ ȳ5 ∨ x̄2)
ante(∅) : (x̄3 ∨ x̄4)
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QCDCL: Basic Idea (2/3)

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Implication graph G :

Li : x1 x2 x3 ∅

x4

Antecedent clauses:
ante(x2) : (x̄1 ∨ x2)
ante(x3) : (x3 ∨ y5 ∨ x̄2)
ante(x4) : (x4 ∨ ȳ5 ∨ x̄2)
ante(∅) : (x̄3 ∨ x̄4)

Start at ∅, select pivots in
reverse assignment ordering:
resolve antecedents of x4, x3.
Q-resolution [BKF95] disallows
tautologies like (ȳ5 ∨ y5 ∨ x̄2)!
Pivot selection more complex
than in CDCL for SAT solving.

(ȳ5 ∨ y5 ∨ x̄2)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x3 ∨ y5 ∨ x̄2)
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QCDCL: Basic Idea (3/3)—Avoiding Tautologies

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Implication graph G :

Li : x1 x2 x3 ∅

x4

Antecedent clauses:
ante(x2) : (x̄1 ∨ x2)
ante(x3) : (x3 ∨ y5 ∨ x̄2)
ante(x4) : (x4 ∨ ȳ5 ∨ x̄2)
ante(∅) : (x̄3 ∨ x̄4)

To avoid tautologies, resolve
on UR-blocking existentials.
Select pivots: x4, x2, x3, x2.
Potentially resolve on
variables more than once to
derive learned clause
CL := (¬x1). (x̄1)

(x̄1 ∨ y5 ∨ x̄2)

(x̄1 ∨ x̄3)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x̄1 ∨ x2)

(x3 ∨ y5 ∨ x̄2)

(x̄1 ∨ x2)
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QCDCL: Pivot Selection—Long Distance Q-Resolution

QCDCL by Traditional Q-Resolution [BKF95]:
Avoid tautologies by appropriate pivot selection [GNT06].
Problem: derivation of a learned clause may be exponential [VG12].
Annotate nodes in conflict graph with intermediate resolvents,
resulting in tree-like (instead of linear) Q-resolution derivations of
learned clauses [LEG13].
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QCDCL: Pivot Selection—Long Distance Q-Resolution

QCDCL by Long Distance (LD) Q-Resolution [ZM02a, BJ12]:
Key property: allow tautological resolvents of a certain kind.
First implementation in QCDCL solver quaffle:
https://www.princeton.edu/~chaff/quaffle.html.
LDQ-resolution calculus is exponentially stronger than QRES.
Practice: always select pivots in strict reverse assignment ordering.

Every resolution step is a valid LDQ-resolution step [ZM02a, ELW13].
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LDQ-Resolution Definition

Example (continued)
ψ = ∃x1, x3, x4∀y5∃x2.(x̄1 ∨ x2) ∧ (x3 ∨ y5 ∨ x̄2) ∧ (x4 ∨ ȳ5 ∨ x̄2) ∧ (x̄3 ∨ x̄4)

(ȳ5 ∨ y5 ∨ x̄2)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x3 ∨ y5 ∨ x̄2)

Long-Distance Q-Resolution: [ZM02a, BJ12]
Generation of tautologies must respect prefix ordering of pivots.
Tautological resolvent C with {x , x̄} ⊆ C :

q(x) = ∀
Existential pivot p: p < x in prefix ordering.
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LDQ-Resolution Example

Example (Clause Learning, continued)
Prefix: ∃x1, x3, x4∀y5∃x2
Assignment A = {x1, x2, x3, x4}
Implication graph G :

Li : x1 x2 x3 ∅

x4

Antecedent clauses:
ante(x2) : (x̄1 ∨ x2)
ante(x3) : (x3 ∨ y5 ∨ x̄2)
ante(x4) : (x4 ∨ ȳ5 ∨ x̄2)
ante(∅) : (x̄3 ∨ x̄4)

Start at ∅, always select pivots
in reverse assignment ordering:
Resolve antecedents of x4, x3, x2.
Pivots obey order restriction of
LDQ-resolution: x3 < y5
To derive CL := (¬x1), resolve
at most once on a variable.

(x̄1)

(x̄1 ∨ x2) (ȳ5 ∨ y5 ∨ x̄2)

(x̄3 ∨ ȳ5 ∨ x̄2)

(x̄3 ∨ x̄4) (x4 ∨ ȳ5 ∨ x̄2)

(x3 ∨ y5 ∨ x̄2)
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Abstract Workflow: Adding Cube Learning

QBCP
Conflict Detection:

ψ′ = ⊥?

Decision

Making

Backtracking Clause Learning UNSAT

PCNF ψ

A = ∅

CL 6= ∅ CL = ∅

A′ ⊂ A, A := A′

A := A ∪ {l}

YES

NOψ′

So far, we have focused on unsatisfiable QBFs.
Clause learning: generation of QRES proofs of unsatisfiability.
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Abstract Workflow: Adding Cube Learning

QBCP
Conflict/Solution

Detection:
ψ′ = ⊥ or ψ′ = ⊤?

Decision
Making

Backtracking
Clause/Cube
Learning

UNSAT/
SAT

PCNF ψ

A = ∅

CL 6= ∅ CL = ∅

A′ ⊂ A, A := A′

A := A ∪ {l}

YES

NOψ′

Cube learning: solving satisfiable QBFs, similar to clause learning.
Cube: conjunction of literals.
QCDCL: clause and cube learning, driven by implication graphs.
Derivation of cubes from a given PCNF ψ: variant of QRES.
Termination and backtracking controlled by learned clause/cube CL.
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Cube Learning: Variant of QRES (1/2)

Definition (Model Generation, cf. [GNT06, Let02, ZM02b])
Let ψ = Q̂.φ be a PCNF.

C
C = (

∧
l∈A) is a cube where {x , x̄} 6⊆ C and A is an as-

signment with ψ[A] = >, i.e. every clause of ψ satisfied. (cu-init)

Cube Learning as a Proof System:
Cube C by model generation: v ∈ C (v̄ ∈ C) if v assigned to > (⊥).
C (also called cover set): implicant of CNF φ, i.e. C ⇒ φ.
Model generation: a new axiom added to QRES.
QRES for cubes: Q-resolution and existential reduction on cubes.
PCNF ψ is satisfiable iff the empty cube can be derived from ψ.
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Cube Learning: Variant of QRES (2/2)

Definition (Model Generation, cf. [GNT06, Let02, ZM02b])
Let ψ = Q̂.φ be a PCNF.

C
C = (

∧
l∈A) is a cube where {x , x̄} 6⊆ C and A is an as-

signment with ψ[A] = >, i.e. every clause of ψ satisfied. (cu-init)

Example
ψ = ∃x∀u∃y .(x̄ ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ ū ∨ ȳ)

(x̄ ∧ u ∧ ȳ) (x̄ ∧ ū ∧ y) By model generation: derive cubes
(x̄ ∧ u ∧ ȳ) and (x̄ ∧ ū ∧ y).
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Cube Learning: Variant of QRES (2/2)

Definition (Existential Reduction, cf. [GNT06, Let02, ZM02b])
Let C be a cube.

C ∪ {l}
C

for all x ∈ Q̂ : {x , x̄} 6⊆ (C ∪ {l}), q(l) = ∃, and
l ′ < l for all l ′ ∈ C with q(l ′) = ∀ (cu-red)

Example
ψ = ∃x∀u∃y .(x̄ ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ ū ∨ ȳ)

(x̄ ∧ u)

(x̄ ∧ u ∧ ȳ)

(x̄ ∧ ū)

(x̄ ∧ ū ∧ y) By model generation: derive cubes
(x̄ ∧ u ∧ ȳ) and (x̄ ∧ ū ∧ y).
By existential reduction: reduce trailing ȳ
from (x̄ ∧ u ∧ ȳ), y from (x̄ ∧ ū ∧ y).
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Cube Learning: Variant of QRES (2/2)

Definition (Cube Resolution, cf. [GNT06, Let02, ZM02b])
Let C1,C2 be cubes.

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

for all x ∈ Q̂ : {x , x̄} 6⊆ (C1 ∪ C2),
p̄ 6∈ C1, p 6∈ C2, and q(p) = ∀ (cu-res)

Example
ψ = ∃x∀u∃y .(x̄ ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ ū ∨ ȳ)

∅

(x̄)

(x̄ ∧ u)

(x̄ ∧ u ∧ ȳ)

(x̄ ∧ ū)

(x̄ ∧ ū ∧ y) By model generation: derive cubes
(x̄ ∧ u ∧ ȳ) and (x̄ ∧ ū ∧ y).
By existential reduction: reduce trailing ȳ
from (x̄ ∧ u ∧ ȳ), y from (x̄ ∧ ū ∧ y).
Resolve (x̄ ∧ ū) and (x̄ ∧ u) on universal u.
Reduce (x̄) to derive ∅.
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Abstract Workflow: Final QCDCL View

QBCP
Conflict/Solution

Detection:
ψ′ = ⊥ or ψ′ = ⊤?

Decision
Making

Backtracking
Clause/Cube
Learning

UNSAT/
SAT

PCNF ψ

A = ∅

CL 6= ∅ CL = ∅

A′ ⊂ A, A := A′

A := A ∪ {l}

YES

NOψ′

Generate assignments A by decision making and (unit) propagation.
Simplify ψ under A to obtain ψ′.
Conflict: ψ′ = ⊥: ψ′ contains a falsified clause.
Solution: ψ′ = >: all clauses in ψ′ satisfied (i.e., empty CNF).
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Abstract Workflow: Final QCDCL View

QBCP
Conflict/Solution

Detection:
ψ′ = ⊥ or ψ′ = ⊤?

Decision
Making

Backtracking
Clause/Cube
Learning

UNSAT/
SAT

PCNF ψ

A = ∅

CL 6= ∅ CL = ∅

A′ ⊂ A, A := A′

A := A ∪ {l}

YES

NOψ′

Generate learned clause (cube) CL by Q-resolution, added to ψ.
Empty clause (cube) CL = ∅: formula proved UNSAT (SAT).
Q-resolution proofs of (un)satisfiability by QRES.
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Abstract Workflow: Final QCDCL View

QBCP
Conflict/Solution

Detection:
ψ′ = ⊥ or ψ′ = ⊤?

Decision
Making

Backtracking
Clause/Cube
Learning

UNSAT/
SAT

PCNF ψ

A = ∅

CL 6= ∅ CL = ∅

A′ ⊂ A, A := A′

A := A ∪ {l}

YES

NOψ′

Conflict detected: select clauses for Q-resolution.

Definition (Clause Axiom of QRES)

C Given a PCNF ψ = Q̂.φ, C ∈ φ is a clause.
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Abstract Workflow: Final QCDCL View

QBCP
Conflict/Solution

Detection:
ψ′ = ⊥ or ψ′ = ⊤?

Decision
Making

Backtracking
Clause/Cube
Learning

UNSAT/
SAT

PCNF ψ

A = ∅

CL 6= ∅ CL = ∅

A′ ⊂ A, A := A′

A := A ∪ {l}

YES

NOψ′

Solution detected: select cubes for Q-resolution.

Definition (Cube Axiom of QRES)

C
Given a PCNF ψ = Q̂.φ and an assignment A with ψ[A] = >,
C = (

∧
l∈A) is a cube.
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QCDCL in Practice

Clause and Cube Learning:
PCNF ψ := Q̂. φ with quantifier prefix Q̂ and CNF φ.
CNFs of learned clauses φCL and DNF of cubes φCU .
Properties: Q̂. φ ≡sat Q̂. (φ ∧ φCL) and Q̂. φ ≡sat Q̂. (φ ∨ φCU).

Interplay Between Clauses and Cubes:
QBCP applied to φ, φCL, and φCU .
Assignments by unit clauses can trigger unit cubes and vice versa.
Antecedent clauses and antecedent cubes are recorded as usual.

Applying the Q-Resolution Calculus:
Similar to clause learning, cube rules are driven by implication graph.
In a derivation, applications of clause and cube rules are never mixed.
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Asserting Learned Clauses and Cubes

Search Space Exploration in QCDCL:
No explicit flipping of variables in decision making.
Fundamental difference to traditional backtracking algorithms.
Backjumping: asserting clauses (cubes) become unit by QBCP.
Asserting clauses (cubes) cause flipping of variables.
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Asserting Learned Clauses and Cubes

Asserting Criteria Applied During Learning:
Start at empty clause ∅ or the cube derived by model-gen. at level k.
Let C be the current clause/cube derived by QRES.
C asserting if C becomes unit in QBCP at some level j < k.
If C asserting, then stop derivation, learn C , and backjump to level j .
Otherwise, continue applying QRES rules.
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Clause and Cube Learning Example (1/3)

Example
∃z1,z2∀u∃y .(u∨ȳ)∧(ū∨y)∧(z1∨u∨ȳ)∧(z2∨ū∨y)∧(z̄1∨ū∨ȳ)∧(z̄2∨u∨y)

Level 0 is empty, no unit clauses present.
Levels 1, 2: decisions z1 and z2.
Level 3: decision u, implies y by QBCP,
ante(y) := (ū ∨ y).
Conflict: ante(∅) := (z̄1 ∨ ū ∨ ȳ).

(z̄1)

(z̄1 ∨ u)

(z̄1 ∨ ū ∨ y) (ū ∨ y)

Learn clause CL,1 := (z̄1), asserting at L0.

L0 :

L1 : z1

L2 : z2

L3 : u y ∅
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Clause and Cube Learning Example (2/3)

Example
∃z1,z2∀u∃y .(u∨ȳ)∧(ū∨y)∧(z1∨u∨ȳ)∧(z2∨ū∨y)∧(z̄1∨ū∨ȳ)∧(z̄2∨u∨y)

Backjump to L0, CL,1 = (z̄1) unit.
Level 1: decision z̄2.
Level 2: decision ū, implies ȳ by QBCP.
All clauses satisfied.

(z̄1 ∧ z̄2 ∧ ū)

(z̄1 ∧ z̄2 ∧ ū ∧ ȳ)

Cube learning: model generation,
existential reduction.
Learn cube CL,2 := (z̄1 ∧ z̄2 ∧ ū),
asserting at L1.

L0 : z̄1

L1 : z̄2

L2 : ū ȳ
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Clause and Cube Learning Example (3/3)

Example
∃z1,z2∀u∃y .(u∨ȳ)∧(ū∨y)∧(z1∨u∨ȳ)∧(z2∨ū∨y)∧(z̄1∨ū∨ȳ)∧(z̄2∨u∨y)

Backjump to L1, CL,2 := (z̄1 ∧ z̄2 ∧ ū) unit.
Level 1: ante(u) := CL,2, implies (y).
All clauses satisfied.

∅

(z̄1 ∧ z̄2)

(z̄1 ∧ z̄2 ∧ ū) (z̄1 ∧ z̄2 ∧ u)

(z̄1 ∧ z̄2 ∧ u ∧ y)

Cube learning: derive empty cube, proving
satisfiability.

L0 : z̄1

L1 : z̄2 u y
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Clause and Cube Learning: Remarks

QCDCL Properties (by Construction):
Implication graph, i.e., assignment order, guides QRES rules.
Graph may contain assignments from unit clauses and cubes.
At conflict: only clauses are derived, but never cubes.
At solution: only cubes are derived, but never clauses.
Empty clause (cube) potentially derived at any level (termination).
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Clause and Cube Learning: Remarks

Cube Learning Worst Case: [RBM97, Let02]
ψ = ∀u1∃x1 . . . ∀un∃xn.

∧n
i=1[(ui ∨ x̄i) ∧ (ūi ∨ xi)]

Easy satisfiable formula: as the value of xi , always choose f (ui) := ui .
However: all cube resolution proofs are exponential (worst case DNF).
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Typical QBF Workflow: Generating Proofs and Certificates

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

Solver Correctness: How to verify the result?
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Typical QBF Workflow: Generating Proofs and Certificates

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

QBF model  problem solution

(Counter-)Models: How to obtain solution to original problem?
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Models of Satisfiable QBFs

Definition (Skolem Function)
Let ψ be a PCNF, y a existential variable.

Let Dψ(v) := {w ∈ ψ | q(v) 6= q(w) and w < v}, q(v) ∈ {∀, ∃}.
Skolem function fy (x1, . . . , xk) of y : Dψ(y) = {x1, . . . , xk}.
Function fy depends on all universal variables smaller than y .

Definition (Skolem Function Model)
A PCNF ψ with existential variables y1, . . . , ym is satisfiable iff
ψ[y1/fy1(Dψ(y1)), . . . , ym/fym(Dψ(ym))] is satisfiable.
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Models of Satisfiable QBFs

Example (Skolem Function Model)
ψ = ∃x∀u∃y .(x̄ ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ ū ∨ ȳ)

Skolem function fx = ⊥ of x with Dψ(x) = ∅.
Skolem function fy (u) = ū of y with Dψ(y) = {u}.
ψ[x/fx , y/fy (u)] = ∀u.(⊥ ∨ u ∨ ū) ∧ (⊥ ∨ ū ∨ u)
Satisfiable: ψ[x/fx , y/fy (u)] = >

Checking Skolem Function Models:
Observe: ψ[x/fx , y/fy (u)] contains only ∀-variables.
Use a SAT solver to check whether ¬(ψ[x/fx , y/fy (u)]) is
unsatisfiable.
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Countermodels of Unsatisfiable QBFs

Definition (Herbrand Function)
Let ψ be a PCNF, x a universal variable.

Let Dψ(v) := {w ∈ ψ | q(v) 6= q(w) and w < v}, q(v) ∈ {∀, ∃}.
Herbrand function fx (y1, . . . , yk) of x : Dψ(x) = {y1, . . . , yk}.
Function fx depends on all existential variables smaller than x .

Definition (Herbrand Function Countermodel)
A PCNF ψ with universal variables x1, . . . , xm is unsatisfiable iff
ψ[x1/fx1(Dψ(x1)), . . . , xm/fxm(Dψ(xm))] is unsatisfiable.
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Countermodels of Unsatisfiable QBFs

Example (Herbrand Function Countermodel)
ψ = ∃x∀u∃y .(x ∨ u ∨ y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x̄ ∨ ū ∨ ȳ)

Herbrand function fu(x) = (x) of u with Dψ(u) = {x}.
ψ[u/fu(x)] = ∃x , y .(x ∨ x ∨ y)∧ (x ∨ x ∨ ȳ)∧ (x̄ ∨ x̄ ∨ y)∧ (x̄ ∨ x̄ ∨ ȳ)
Unsatisfiable: ψ[u/fu(x)] = ∃x , y .(x ∨ y)∧ (x ∨ ȳ)∧ (x̄ ∨ y)∧ (x̄ ∨ ȳ)

Checking Herbrand Function Countermodels:
Observe: ψ[x/fx , y/fy (u)] contains only ∃-variables.
Use a SAT solver to check whether ψ[x/fx , y/fy (u)] is unsatisfiable.
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Generating (Counter)Models from Proofs

Q-Resolution Proofs:
QCDCL solvers produce derivations P of the empty clause/cube.
Proof P can be filtered out of derivations of all learned clauses/cubes.

Extracting Skolem/Herbrand Functions from Proofs:
By inspection of P, run time linear in |P| (|P| can be exponential).
Extraction from long-distance Q-resolution proofs [BJJW15].
Approaches to compute winning strategies from P [GGB11, ELW13].
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Generating (Counter)Models from Proofs

Definition (Extracting Herbrand functions [BJ11, BJ12])
Let P be a proof (Q-resolution DAG) of the empty clause ∅.

Visit clauses in P in topological ordering.
Inspect universal reduction steps C ′ = UR(C).
Update Herbrand functions of variables u reduced from C by C ′.
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Generating Countermodels from Proofs: Example

Example (Extracting Herbrand Functions [BJ11, BJ12])
ψ = ∃x∀u∃y .(x ∨ u ∨ y) ∧ (x ∨ u ∨ ȳ) ∧ (x̄ ∨ ū ∨ y) ∧ (x̄ ∨ ū ∨ ȳ)

∅

(x)

(x ∨ u)

(x ∨ u ∨ y) (x ∨ u ∨ ȳ)

(x̄)

(x̄ ∨ ū)

(x̄ ∨ ū ∨ y) (x̄ ∨ ū ∨ ȳ)

Literal u reduced from (x ∨ u), update: fu(x) := (x).
Literal ū reduced from (x̄ ∨ ū), update: fu(x) := fu(x) ∧ ¬(x̄) = (x).
Unsatisfiable: ψ[u/fu(x)] = ∃x , y .(x ∨ y)∧ (x ∨ ȳ)∧ (x̄ ∨ y)∧ (x̄ ∨ ȳ)
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(Counter)Models: Special Cases

Example
Let ψ := ∃X∀Y. φ and ψ′ := ∀Y ∃X. φ be one-alternation QBFs.

If ψ satisfiable: all Skolem functions are constant.
If ψ′ unsatisfiable: all Herbrand functions are constant.
No need to produce derivations of the empty clause/cube.
QBF solvers can directly output values of Skolem/Herbrand functions.
Useful for modelling and solving problems in ΣP

2 and ΠP
2 .

QDIMACS output format specification.
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Typical QBF Workflow: Preprocessing

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates

Florian Lonsing (TU Wien) QBF Solving 69 / 84



Blocked Clause Elimination (QBCE) (1/2)
Definition (Blocking Literal, Blocked Clause [Kul99, BLS11, HJL+15])

Let ψ = Q̂.φ be a PCNF and C ∈ φ a clause.
blocking literal l : l ∈ C with q(l) = ∃ such that for all C ′ ∈ φ with
l̄ ∈ C ′, there exists x with x ≤ l such that {x , x̄} ⊆ (C ∪ (C ′ \ {̄l})).
A clause C is blocked if it contains a blocking literal.
Removing blocked clauses preserves satisfiability.

(. . . ∨ x̄1 ∨ . . . ∨ l̄ . . .)
︸ ︷︷ ︸

C′

1

. . . (. . . ∨ x̄i ∨ . . . ∨ l̄ . . .)
︸ ︷︷ ︸

C′

i

. . . (. . . ∨ x̄n ∨ . . . ∨ l̄ . . .)
︸ ︷︷ ︸

C′

n

{x1, x̄1} ⊆ C ∪ (C′

1
\ {l̄}) x1 ≤ l

C = (x1 ∨ . . . ∨ xi ∨ . . . ∨ xn ∨ . . . ∨ l ∨ . . .)
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Blocked Clause Elimination (QBCE) (1/2)
Definition (Blocking Literal, Blocked Clause [Kul99, BLS11, HJL+15])

Let ψ = Q̂.φ be a PCNF and C ∈ φ a clause.
blocking literal l : l ∈ C with q(l) = ∃ such that for all C ′ ∈ φ with
l̄ ∈ C ′, there exists x with x ≤ l such that {x , x̄} ⊆ (C ∪ (C ′ \ {̄l})).
A clause C is blocked if it contains a blocking literal.
Removing blocked clauses preserves satisfiability.

(. . . ∨ x̄1 ∨ . . . ∨ l̄ . . .)
︸ ︷︷ ︸

C′

1

. . . (. . . ∨ x̄i ∨ . . . ∨ l̄ . . .)
︸ ︷︷ ︸

C′

i

. . . (. . . ∨ x̄n ∨ . . . ∨ l̄ . . .)
︸ ︷︷ ︸

C′

n

{xi, x̄i} ⊆ C ∪ (C′

i
\ {l̄}) xi ≤ l

C = (x1 ∨ . . . ∨ xi ∨ . . . ∨ xn ∨ . . . ∨ l ∨ . . .)
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Blocked Clause Elimination (QBCE) (1/2)
Definition (Blocking Literal, Blocked Clause [Kul99, BLS11, HJL+15])

Let ψ = Q̂.φ be a PCNF and C ∈ φ a clause.
blocking literal l : l ∈ C with q(l) = ∃ such that for all C ′ ∈ φ with
l̄ ∈ C ′, there exists x with x ≤ l such that {x , x̄} ⊆ (C ∪ (C ′ \ {̄l})).
A clause C is blocked if it contains a blocking literal.
Removing blocked clauses preserves satisfiability.

(. . . ∨ x̄1 ∨ . . . ∨ l̄ . . .)
︸ ︷︷ ︸

C′

1

. . . (. . . ∨ x̄i ∨ . . . ∨ l̄ . . .)
︸ ︷︷ ︸

C′

i

. . . (. . . ∨ x̄n ∨ . . . ∨ l̄ . . .)
︸ ︷︷ ︸

C′

n

{xn, x̄n} ⊆ C ∪ (C′

n \ {l̄}) xn ≤ l

C = (x1 ∨ . . . ∨ xi ∨ . . . ∨ xn ∨ . . . ∨ l ∨ . . .)
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Blocked Clause Elimination (QBCE) (2/2)

Important Facts:
Blocking literal l : existentially quantified.

Example
ψ := ∃y∀x∃z .(y ∨ x̄ ∨ z) ∧ (ȳ ∨ x ∨ z) ∧ (y) ∧ (z̄)

ψ is unsatisfiable.
Universal x cannot be a blocking literal.
Otherwise, first two clauses would erroneously be blocked.
Unsoundness: ψ becomes satisfiable.
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Blocked Clause Elimination (QBCE) (2/2)

Important Facts:
Blocking literal l : existentially quantified.
Tautology-producing variable x : ≤ l in prefix ordering.

Example
ψ := ∃y∀x .(y ∨ x̄) ∧ (ȳ ∨ x).

ψ is unsatisfiable.
Prefix ordering matters.
Literals of y are not blocking literals since y ≤ x .
Erroneous removal of any clause makes formula satisfiable.
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Blocked Clause Elimination (QBCE) (2/2)

Important Facts:
Blocking literal l : existentially quantified.
Tautology-producing variable x : ≤ l in prefix ordering.
Check all potential resolution candidates on l .

Pure ∃-literals: vacuously blocking.

Example
ψ = ∃y∀x∃z . (ȳ ∨ z) ∧ (ȳ ∨ z̄) ∧ (x̄ ∨ z) ∧ (x ∨ z̄).

∃-literal ȳ is pure.
No resolution candidates on clauses containing y .
Condition of blocking literal is vacuously satisfied.
Clauses containing ȳ can be removed.
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Expansion (1/4)

ψ0  ψ1  ψ2  . . . ψn = ⊥/>

Successively eliminate variables from a given PCNF ψ0.
Elimination produces satisfiability-equivalent PCNFs ψi ≡sat ψi+1.
Worst case exponential space procedure.
Redundancy elimination on ψi (depending on formula representation).
Stop if ψi reduces to truth constant > or ⊥.
Call a SAT solver if ψi contains only ∃-variables.
Lazy expansion by counter example guided abstraction refinement
(CEGAR) [CGJ+03, JM15b, JKMSC16, RT15].
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Expansion (2/4)

Example
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Eliminate rightmost y :
ψ = ∃x∀u.

[
(x̄) ∧ (ū)

]︸ ︷︷ ︸
y replaced by ⊥

∨
[
(x) ∧ (u)

]︸ ︷︷ ︸
y replaced by >

Convert back to PCNF (distributivity):
ψ = ∃x∀u. (x̄ ∨ x) ∧ (x̄ ∨ u) ∧ (x ∨ ū) ∧ (u ∨ ū)

Expansion of ∃-Variables: cf. [AB02, Bie04]
Eliminate rightmost variables by Shannon expansion [Sha49].
Replace Q̂∃x .φ by Q̂.(φ[x/⊥] ∨ φ[x/>]).
Based on CNF, NNF, and-inverter graphs [AB02, LB08, PS09].
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Expansion (3/4)

Example (continued)
Eliminate rightmost y :
ψ = ∃x∀u.

[
(x̄) ∧ (ū)

]︸ ︷︷ ︸
y replaced by ⊥

∨
[
(x) ∧ (u)

]︸ ︷︷ ︸
y replaced by >

Convert to back PCNF:
ψ = ∃x∀u. (x̄ ∨ x) ∧ (x̄ ∨ u) ∧ (x ∨ ū) ∧ (u ∨ ū)
Simplify and reduce u: ψ = ∃x . (x̄) ∧ (x)

Special Case – ψ in PCNF:
Eliminate leftmost ∀-variables by universal reduction.
Implemented in early expansion-based solvers, cf. [AB02, Bie04].
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Expansion (4/4)

Example (continued)
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Expand u: copy CNF and replace y by fresh yd in copy of CNF.
ψ′ = ∃x , y , yd . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ȳ)︸ ︷︷ ︸

u replaced by ⊥

∧(x̄ ∨ yd) ∧ (x ∨ ȳd) ∧ (yd)︸ ︷︷ ︸
u replaced by >, y replaced by yd

Obtain (x̄) from (x̄ ∨ y) and (ȳ), (x) from (x ∨ ȳd) and (yd).

Expansion of ∀-Variables: cf. [AB02, Bie04]
Eliminate all universal variables by Shannon expansion.
Finally, apply SAT solving.
If x innermost: replace Q̂∀x .φ by Q̂.(φ[x/⊥] ∧ φ[x/>]).
Otherwise, duplicate existential variables inner to x [Bie04, BK07].
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Lazy Expansion by CEGAR

ψ := ∃X∀Y.φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤

Find
Candidate
Solution

Check
Candidate
Solution

ψ′ := ∃X.(
∧

y∈B|Y | φ[Y/y])

Abs(ψ) := ∃X.(
∧

y∈U
φ[Y/y])

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

Let ψ := ∃X∀Y. φ be a one-alternation QBF, φ a non-CNF formula.
ψ is satisfiable iff ψ′ := ∃X .(

∧
y∈B|Y | φ[Y /y]) is satisfiable.

Full expansion ψ′ of ∀Y by set B|Y | of all possible assignments y of Y .
Idea: consider a partial expansion of ∀Y as an abstraction of ψ′.
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Lazy Expansion by CEGAR

ψ := ∃X∀Y.φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤

Find
Candidate
Solution

Check
Candidate
Solution

ψ′ := ∃X.(
∧

y∈B|Y | φ[Y/y])

Abs(ψ) := ∃X.(
∧

y∈U
φ[Y/y])

Refine Abs(ψ) Find Counterexample

No

Yes

Yes

No

Subset U ⊆ B|Y | of set B|Y | of all possible assignments y of Y .
Partial expansion: given U, define Abs(ψ) := ∃X .(

∧
y∈U φ[Y /y]).

Abstraction Abs(ψ): if Abs(ψ) unsatisfiable, then also ψ unsatisfiable.
Initially, set U := ∅ and Abs(ψ) := >.
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Lazy Expansion by CEGAR

ψ := ∃X∀Y.φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤

Find
Candidate
Solution

Check
Candidate
Solution

ψ′ := ∃X.(
∧

y∈B|Y | φ[Y/y])

Abs(ψ) := ∃X.(
∧

y∈U
φ[Y/y])

Refine Abs(ψ) Find Counterexample

No

Yes, x ∈ B
|X|

Yes

No

Check satisfiability of Abs(ψ) using a SAT solver.
If Abs(ψ) unsatisfiable: also ψ unsatisfiable, terminate.
If Abs(ψ) satisfiable: let x ∈ B|X | be a model of Abs(ψ).
x ∈ B|X |: candidate solution of full exp. ψ′ := ∃X .(

∧
y∈B|Y | φ[Y /y]).
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Lazy Expansion by CEGAR

ψ := ∃X∀Y.φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤

Find
Candidate
Solution

Check
Candidate
Solution

ψ′ := ∃X.(
∧

y∈B|Y | φ[Y/y])

Abs(ψ) := ∃X.(
∧

y∈U
φ[Y/y])

Refine Abs(ψ) Find Counterexample

No

Yes, x ∈ B
|X|

Yes

No

If x is also a model of the full expansion ψ′, then ψ is satisfiable.
x is a model of full expansion ψ′ iff ∀Y .φ[X/x] is satisfiable.
∀Y .φ[X/x] is satisfiable iff ∃Y .¬φ[X/x] is unsatisfiable.
Check satisfiability of ∃Y .¬φ[X/x] using a SAT solver.
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Lazy Expansion by CEGAR

ψ := ∃X∀Y.φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤

Find
Candidate
Solution

Check
Candidate
Solution

ψ′ := ∃X.(
∧

y∈B|Y | φ[Y/y])

Abs(ψ) := ∃X.(
∧

y∈U
φ[Y/y])

Refine Abs(ψ) Find Counterexample

No

Yes, x ∈ B
|X|

Yesx ∈ B
|X|

No

y ∈ B
|Y |

If ∃Y .¬φ[X/x] unsatisfiable: ψ is satisfiable, return x and terminate.
If ∃Y .¬φ[X/x] satisfiable: let y ∈ B|Y | be a model of ∃Y .¬φ[X/x].
Note: y is an assignment to ∀-variables in ψ.
y is a counterexample to candidate solution x of full expansion ψ′.
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Lazy Expansion by CEGAR

ψ := ∃X∀Y.φ ψ UNSAT ψ SAT

Abs(ψ) := ⊤

Find
Candidate
Solution

Check
Candidate
Solution

ψ′ := ∃X.(
∧

y∈B|Y | φ[Y/y])

Abs(ψ) := ∃X.(
∧

y∈U
φ[Y/y])

Refine Abs(ψ) Find Counterexample

No

Yes, x ∈ B
|X|

Yesx ∈ B
|X|

No
y ∈ B

|Y |

Refine abstraction Abs(ψ) by counterexample y.
Let U := U ∪ {y} and Abs(ψ) := ∃X .(

∧
y∈U φ[Y /y]).

Adding y to Abs(ψ) prevents repetition of candidate solution x.
E.g. for 2QBF [RTM04, BJS+16], RAReQS (recursive) [JKMSC16].
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Experiments (1/6)

Benchmark Set from QBFEVAL’16:
825 prenex CNF instances, 1800 seconds, 7 GB memory limits.

QBF Solvers:
Top ranked solvers from QBFEVAL’16.
Five different solving paradigms.
Some solvers are based on orthogonal proof systems.
Theory: exponential gap in solving capabilities.
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Experiments (1/6)

Alternation Bias in QBFEVAL’16 Benchmarks: cf. [LE17]
56% of the benchmarks have no more than two quantifier alternations.
Theory: numbers of alternations ≈ levels in polynomial hierarchy.
Focus: 402 instances not solved by preprocessing using
Bloqqer [BLS11].
Analysis wrt. instances having few/many alternations.
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Experiments (2/6): 402 Filtered Instances

Solved
GhostQ 176
AIGSolve 138
QSTS 136
RAReQS 76
DQ 69
QESTO 66
DQ-n 52
CAQE 43
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CAQE

261 instances (65%), ≤ 2 alternations, filtered but not preprocessed.
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Experiments (2/6): 402 Filtered Instances

Solved
DQ 79
QSTS 72
GhostQ 56
DQ-n 55
AIGSolve 54
QESTO 49
CAQE 46
RAReQS 43
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141 instances (35%), ≥ 3 alternations, filtered but not preprocessed.
QCDCL, e.g. DepQBF (DQ), performs better on many alternations.

Florian Lonsing (TU Wien) QBF Solving 78 / 84



Experiments (3/6): 402 Filtered Instances

Solved
RAReQS 157
QESTO 138
QSTS 136
CAQE 118
GhostQ 111
DQ 107
DQ-n 105
AIGSolve 102

 0  25  50  75  100  125  150  175  200  225  250
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

T
im

e

Solved Instances

RAReQS

QESTO

QSTS

CAQE

GhostQ

DQ

DQ-n

AIGSolve

270 instances (67%), ≤ 2 alternations, filtered and preprocessed.
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Experiments (3/6): 402 Filtered Instances

Solved
DQ 81
QSTS 75
DQ-n 75
QESTO 69
CAQE 64
RAReQS 62
AIGSolve 51
GhostQ 46
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132 instances (33%), ≥ 3 alternations, filtered and preprocessed.
QCDCL, e.g. DepQBF (DQ), performs better on many alternations.
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Experiments (4/6): QBFEVAL’17

Table: Solved instances (S), solved unsatisfiable (⊥) and satisfiable ones (>), and
total wall clock time including time outs on 437 filtered instances from
QBFEVAL’17 without (a) and with preprocessing by Bloqqer (b).

Solver S ⊥ > Time
AIGSolve 177 121 56 489K
Rev-Qfun 174 106 68 497K
GhostQ 145 79 66 547K
RAReQS 126 94 32 577K
CAQE 126 87 39 578K
Heretic 122 95 27 580K
DepQBF-opt 115 78 37 603K
Ijtihad 110 88 22 599K
QSTS-d 103 75 28 618K
Qute-random 77 47 30 658K
QESTO 76 56 20 661K
DynQBF 47 27 20 714K

(a) Not preprocessed.

Solver S ⊥ > Time
RAReQS 175 127 48 499K
CAQE 169 114 55 514K
Heretic 164 119 45 513K
AIGSolve 138 98 40 555K
Ijtihad 136 103 33 555K
Rev-Qfun 135 92 43 563K
QSTS-d 127 98 29 576K
QESTO 115 84 31 601K
DepQBF-opt 102 64 38 624K
GhostQ 82 47 35 661K
Qute-random 73 56 17 672K
DynQBF 65 37 28 684K

(b) Preprocessed by Bloqqer.
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Experiments (5/6): QBFEVAL’17

Table: Instances solved in 437 filtered instances not preprocessed by Bloqqer with
respect to classes by number of quantifier blocks (#q) and number of formulas in
each class (#f).

#q #f AI
GS

ol
ve

Re
v-
Q
fu
n

Gh
os
tQ

RA
Re

Q
S

CA
Q
E

H
er
et
ic

D
ep
Q
BF

-o
pt

Ijt
ih
ad

Q
ST

S-
d

Q
ut
e-
ra
nd

om

Q
ES

TO

D
yn
Q
BF

2 63 33 17 32 2 5 2 6 2 8 2 4 18
3 215 83 101 89 62 56 50 47 49 43 36 35 19
4–6 36 27 16 3 16 20 16 6 16 14 6 2 0
7–9 27 19 9 1 17 5 18 8 16 7 4 4 4
10–15 15 0 2 0 3 2 4 10 0 0 2 1 0
16–20 21 2 4 3 3 8 7 10 4 8 5 7 1
21– 60 13 25 17 23 30 25 28 23 23 22 23 5
2–3 278 116 118 121 64 61 52 53 51 51 38 39 37
4– 159 61 56 24 62 65 70 62 59 52 39 37 10
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Experiments (6/6): QBFEVAL’17

Table: Instances solved in 437 filtered instances preprocessed by Bloqqer with
respect to classes by number of quantifier blocks (#q) and number of formulas in
each class (#f).

#q #f RA
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Q
BF
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Q
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D
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Q
BF

2 65 16 15 13 12 10 6 11 14 7 3 4 24
3 218 80 81 65 65 59 65 46 50 34 53 23 18
4–6 32 18 20 17 24 17 19 17 6 5 2 7 8
7–9 27 19 6 21 19 18 10 8 7 9 3 3 5
10–15 25 13 9 14 3 8 10 8 7 15 6 11 3
16–20 28 12 16 17 4 9 12 16 11 15 3 10 1
21– 42 17 22 17 11 15 13 21 20 17 12 15 6
2–3 283 96 96 78 77 69 71 57 64 41 56 27 42
4– 154 79 73 86 61 67 64 70 51 61 26 46 23
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Outlook and Future Work
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Outlook and Future Work (1/2)

QBF in Practice:
QBF tools are not (yet) a push-button technology.
Pitfalls: Tseitin encodings, premature preprocessing.
Goal: integrated workflow without the need for manual intervention.

Challenges:
Extracting proofs and certificates in workflows including preprocessing
[HSB14a, HSB14b] and incremental solving [MMLB12, LE14].
Integrating dependency schemes [SS09, LB10, VG11, PSS16, PSS17]
in workflows to relax the linear quantifier ordering.
Implementations of QCDCL do not harness the full power of
Q-resolution [Jan16].
Combining strengths of orthogonal solving approaches.
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Outlook and Future Work (2/2)

QBF is still an emerging field with plenty of applications.
Assuming that NP 6= PSPACE, QBF is more difficult than SAT. . .
. . . but allows for exponentially more succinct encodings than SAT.
Recent theoretical progress: QBF proof systems.
Computational hardness motivates exploring alternative approaches:
e.g. CEGAR-based expansion, computing Skolem functions [RS16].
Expert and/or domain knowledge may be necessary for tuning.
Please document and publish your tools and benchmarks!
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[Appendix] Expansion and Instantiation

Definition (∀Exp+RES [JM13, BCJ14, JM15a])

Axiom: C for all x ∈ Q̂ : {x , x̄} 6⊆ C and C ∈ φ

Instantiation: C
{lAl | l ∈ C , q(l) = ∃}

Complete assignment A to universal variables s.t. literals in C
falsified, Al ⊆ A restricted to universal variables u with u < l .

Resolution: C1 ∪ {pA} C2 ∪ {p̄A}
C1 ∪ C2

for all x ∈ Q̂:
{x , x̄} 6⊆ (C1 ∪C2)

First, instantiate (i.e. replace) all universal variables by constants.
Existential literals in a clause are annotated by partial assignments.
Finally, resolve on existential literals with matching annotations.
Instantiation and annotation mimics universal expansion.
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[Appendix] Expansion and Instantiation

Example (continued)
ψ = ∃x∀u∃y . (x̄ ∨ y) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u ∨ ȳ)

Complete assignments: A = {ū} and A′ = {u}.
Instantiate: (x̄ ∨ y ū) ∧ (x ∨ ȳu) ∧ (yu) ∧ (ȳ ū)
Note: cannot resolve (yu) and (ȳ ū) due to mismatching annotations.
Obtain (x) from (x ∨ ȳu) and (yu), (x̄) from (x̄ ∨ y ū) and (ȳ ū).

Different Power of QBF Proof Systems:
Q-resolution and expansion/instantiation are incomparable [BCJ15].
Interpreting QBFs as first-order logic formulas [SLB12, Egl16].
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[Appendix] QBFs as First-Order Logic Formulas

Definition (QBF to FOL Translation [SLB12])
Mapping J·K : QBF → FOL with respect to unary FOL predicate p:

J∃x .φK = ∃x .JφK
Jφ ∨ ψK = JφK ∨ JψK

JxK = p(x)
J>K = p(true)

J∀x .φK = ∀x .JφK
Jφ ∧ ψK = JφK ∧ JψK

J¬ψK = ¬JψK
J⊥K = p(false)

It holds that p(true) (p(false)) is true (false) in every FOL interpretation.

Proposition ([SLB12])
The QBF ψ is satisfiable iff JψK ∧ p(true) ∧ ¬p(false) is satisfiable.
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[Appendix] Typical QBF Workflow

Problems

Encodings

Preprocessing

Solving

Proofs and

Certificates
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[Appendix] Encodings (1)

QCIR: Quantified CIRcuit
Format for QBFs in non-prenex non-CNF.
Conversion tools, e.g., part of GhostQ solver [Gho16, KSGC10].

1 Introduction

This document defines the input format QCIRfor tools processing or producing
quantified Boolean formulas (QBF). The QCIRformat is based on the ISCAS-89
format. QCIRallows the representation of quantified circuits in prenex as well
as in non-prenex form. The QCIRformat is designed for being easy to use in
applications on the one hand and for being easy to be implemented in solvers
and related tools on the other hand. In order to satisfy both requirements, the
standard defines a general version providing much freedom to the user and a
version defining cleansed formulas which are easier to process. This document
first gives a concise definition of the structure of a QCIRformula followed by a
textual description of implementation details which cannot be covered in terms
of a grammar. Then restrictions to the cleansed format are introduced and
examples are provided. Finally, this document concludes with a list of features
to be included in the future.

2 Format Specification

2.1 Syntax

The following BNF grammar specifies the structure of a formula represented in
QCIR (Quantified CIRcuit).

qcir-file ::= format-id qblock-stmt output-stmt (gate-stmt nl)
∗

format-id ::= #QCIR-G14 [integer] nl

qblock-stmt ::= [free(var-list)nl ] qblock-quant∗

qblock-quant ::= quant(var-list)nl

var-list ::= (var,)∗ var

lit-list ::= (lit,)∗ lit | ε
output-stmt ::= output(lit)nl

gate-stmt ::= gvar = ngate type(lit-list)

| gvar = xor(lit, lit)

| gvar = ite(lit, lit, lit)

| gvar = quant(var-list; lit)

quant ::= exists | forall
var ::= (A string of ASCII letters, digits, and underscores)

gvar ::= (A string of ASCII letters, digits, and underscores)

nl ::= newline

lit ::= var | -var | gvar | -gvar

ngate type ::= and | or

2

#QCIR-G14

forall(v1)

exists(v2, v3)

output(g3)

g1 = and(v1, v2)

g2 = and(-v1, -v2, v3)

g3 = or(g1, g2)

∀v1.∃v2.∃v3. (v1 ∧ v2)︸ ︷︷ ︸
g1

∨ (¬v1 ∧ ¬v2 ∧ v3)︸ ︷︷ ︸
g2︸ ︷︷ ︸

g3

As seen above, a file in QCIR format consists of four parts: (1) format identi-
fication, (2) a quantifier prefix, (3) identification of the circuit output, and (4)
gate definitions. In general, a formula in QCIR format has the following form:

3.2 Formula in Non-Prenex Form

A formula in non-prenex form looks as follows:

#QCIR-G14

forall(z)

output(g3)

g1 = and(x1, x2, z)

g2 = exists(x1, x2; g1)

g3 = or(z, g2)

∀z.

g3︷ ︸︸ ︷
z ∨ ∃x1.∃x2. (x1 ∧ x2 ∧ z)︸ ︷︷ ︸

g1︸ ︷︷ ︸
g2

3.3 Formula in Cleansed Form

The formula from the previous section has the following cleansed form:
#QCIR-G14 6

forall(3)

output(4)

5 = and(1, 2, 3)

6 = exists(1, 2; 5)

4 = or(3, 6)

4 Beyond this Standard

This is a collection of topics to be handled in later versions of this document.

5

From [QCI14]: http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf
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[Appendix] Encodings (2)

Definition (Prenexing, cf. [AB02, Egl94, EST+03, ETW02, GNT07])
(Qx . φ) ◦ ψ ≡ Qx . (φ ◦ ψ), ψ a QBF, Q ∈ {∀,∃}, ◦ ∈ {∧,∨}, x 6∈ Var(ψ).

Definition (CNF transformation, cf. [Tse68, NW01, PG86])
Given a prenex QBF ψ := Q̂.φ, subformulas ψi of ψ.
ψi = (ψi ,l ◦ ψi ,r ), ◦ ∈ {∨,∧,→,↔,⊗}.
Add equivalences ti ↔ (ψi ,l ◦ ψi ,r ), fresh variable ti .
Convert each ti ↔ (ψi ,l ◦ ψi ,r ) to CNF depending on ◦.
Resulting PCNF ψ′: satisfiability-equivalent to ψ, size linear in |ψ|.
Safe: quantify each ti innermost [GMN09]: ψ := Q̂∃ti .φ.
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[Appendix] Encodings (3)

Definition (QBF Extension Rule, cf. [Tse68, JBS+07, BCJ16])
Let ψ := Q1x1 . . .Qixi . . .Qjxj . . .Qnxn.φ be a PCNF.
Consider variables xi , xj with xi ≤ xj in ψ, fresh existential variable v .
Add definition v ↔ (x̄i ∨ x̄j) in CNF: (v̄ ∨ x̄i ∨ x̄j)∧ (v ∨ xi)∧ (v ∨ xj).
Strong variant: quantify v after xj , Q1x1 . . .Qixi . . .Qjxj∃v . . .Qnxn.
Weak variant: quantify v innermost, Q1x1 . . .Qixi . . .Qjxj . . .Qnxn∃v .

Proposition (cf. [JBS+07, BCJ16])
Q-resolution with the strong extension rule is exponentially more powerful
than with the weak extension rule with respect to lengths of refutations.

⇒ “bad” placement of Tseitin variables in encoding phase may have
negative impact on solving in a later stage.

Florian Lonsing (TU Wien) QBF Solving 91 / 84



[Appendix] Encodings (4): QParity

Definition (QParity Function [BCJ15])
QParityn := ∃x1, . . . , xn∀y . XOR(XOR(. . .XOR(x1, x2), . . . , xn), y).

CNF φ of QParityn by
Tseitin translation:

(t1 ↔ XOR(x1, x2)) ∧∧
1<i<n

(ti ↔ XOR(ti−1, xi+1)) ∧

(tn ↔ XOR(tn−1, y)) ∧ (tn)

Prefix by weak extension rule : Q̂W := ∃x1, . . . , xn∀y∃t1, . . . , tn
Prefix by strong extension rule: Q̂S := ∃x1, . . . , xn∃t1, . . . , tn−1∀y∃tn

Proposition ([BCJ15, BCJ16])
The PCNF Q̂W .φ has only exponential Q-resolution refutations.
The PCNF Q̂S .φ has polynomial Q-resolution refutations.
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[Appendix] Encodings (5): QParity

Q̂W .φ := ∃x1, x2, x3∀y . XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)
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[Appendix] Encodings (5): QParity

Q̂W .φ := ∃x1, x2, x3∀y∃t1, t2, t3. XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)
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[Appendix] Encodings (5): QParity

Q̂S .φ := ∃x1, x2, x3 ∀y . XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)
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[Appendix] Encodings (5): QParity

Q̂S .φ := ∃x1, x2, x3, t1, t2∀y∃t3. XOR3(XOR2(XOR1(x1, x2), x3), y)

⊗t3

⊗t2

⊗t1

x1 x2

x3

y

t1 ↔ XOR(x1, x2)
t2 ↔ XOR(t1, x3)
t3 ↔ XOR(t2, y)

t1 : (t̄1 ∨ x1 ∨ x2) ∧
(t̄1 ∨ x̄1 ∨ x̄2) ∧
(t1 ∨ x̄1 ∨ x2) ∧
(t1 ∨ x1 ∨ x̄2) ∧

t2 : (t̄2 ∨ t1 ∨ x3) ∧
(t̄2 ∨ t̄1 ∨ x̄3) ∧
(t2 ∨ t̄1 ∨ x3) ∧
(t2 ∨ t1 ∨ x̄3) ∧

t3 : (t̄3 ∨ t2 ∨ y) ∧
(t̄3 ∨ t̄2 ∨ ȳ) ∧
(t3 ∨ t̄2 ∨ y) ∧
(t3 ∨ t2 ∨ ȳ) ∧

out : (t3)
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[Appendix] QBF Solving by Clause Selection

Example (Clause Selection and Clausal Abstraction [JM15b, RT15])
Let ψ := ∀X∃Y. φ be a one-alternation QBF, φ a CNF.

ψ unsatisfiable iff, for some x ∈ B|X |, ∃Y. φ[X/x] unsatisfiable.
Think of x ∈ B|X | as a selection φxS ⊆ φ of clauses.
Clause C ∈ φxS iff C not satisfied by x, i.e. C [X/x] 6= >.
If ∃Y. φxS [X/x] unsatisfiable then ∃Y. φ[X/x] and ψ unsatisfiable.
Otherwise, consider model y ∈ B|Y | of ∃Y. φxS [X/x].
Find new x′ ∈ B|X | such that there exists C ∈ φx′

S with C [Y /y] 6= >.
If no such x′ exists then ψ is satisfiable.
CEGAR: find candidate solutions x and counterexamples y by SAT
solving, refinement step blocks unsuccessful selections φxS .
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