Inconsistency Measurement based on Variables in Minimal Unsatisfiable Subsets

Guohui Xiao Yue Ma

Institute of Informatics, Vienna University of Technology Theoretical Computer Science, Dresden University of Technology

ECAI 2012 — August 30, 2012

Overview

- Motivation
- 2 Preliminaries
- 3 Inconsistency Measurement by Variables in MUSes
- 4 Computational Complexities
- **5** Experiments
- **6** Summary

Outline

- Motivation
- 2 Preliminaries
- Inconsistency Measurement by Variables in MUSes
- 4 Computational Complexities
- Experiments
- 6 Summary

Background

- Consistent KBs are useful, but inconsistent KBs imply any conclusion (meaningless!)
- Inconsistency measurement:
 from "is inconsistent" to "how inconsistent"
- Ideas and approaches:
 - based on different views of atomicity of inconsistency
 - Semantics based approaches
 - Syntax based approaches
 - Semantics syntax combined approaches (this paper)

Outline

- Motivation
- 2 Preliminaries
- 3 Inconsistency Measurement by Variables in MUSes
- 4 Computational Complexities
- Experiments
- 6 Summary

- Multi-Valued Semantics
 - ▶ 4-valued, 3-valued, *LP_m*, Quasi-Classical, . . .
 - ▶ $I: Var(K) \rightarrow \{t, f, Both, None\}$

- Multi-Valued Semantics
 - ▶ 4-valued, 3-valued, *LP_m*, Quasi-Classical, . . .
 - ▶ $I: Var(K) \rightarrow \{t, f, Both, None\}$
- ID of K respect to I under i-semantics $(i = 3, 4, LP_m, Q)$

$$ID_i(K, I) = \frac{|\{p \mid p^I = B, p \in Var(K)\}|}{|Var(K)|}, \text{ if } I \models_i K$$

- Multi-Valued Semantics
 - ▶ 4-valued, 3-valued, *LP_m*, Quasi-Classical, . . .
 - ▶ $I: Var(K) \rightarrow \{t, f, Both, None\}$
- ID of K respect to I under i-semantics $(i = 3, 4, LP_m, Q)$

$$ID_i(K, I) = \frac{|\{p \mid p^I = B, p \in Var(K)\}|}{|Var(K)|}, \text{ if } I \models_i K$$

• ID of K under under i-semantics ($i = 3, 4, LP_m, Q$)

$$ID_i(K) = \min_{I \models_i K} ID_i(K, I)$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Inconsistency Degree under 4-valued Semantics

Truth values: $\{t, f, B, N\}$ 4-model *I*: $K \rightarrow \{t, B\}$

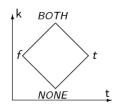


Figure: Four-Valued Logic

•
$$ID_4(K, I) = \frac{|\{p|p^I = B, p \in Var(K)\}|}{|Var(K)|}$$

 $ID_4(K) = min_{I \models_4 K} ID_4(K),$

$$\rightsquigarrow K = \{p, \neg q, \neg p \lor q, r \lor s\}$$

$$I_1: p^{l_1} = B, q^{l_1} = f, r^{l_1} = t, s^{l_1} = t,$$
 $I_2: p^{l_2} = B, q^{l_2} = B, r^{l_2} = t, s^{l_2} = t$
 $I_3: p^{l_3} = B, q^{l_3} = B, r^{l_3} = t, s^{l_3} = N$

$$ID_4(K, I_1) = \frac{1}{4}, ID_4(K, I_2) = \frac{2}{4}$$
 $ID_4(K, I_3) = \frac{2}{4}$
 $ID_4(K) = \frac{1}{4}$

Inconsistency Degree under Quasi-Classical Semantics

Quasi-Classical (Q) interpretation:

- 4-valued interpretation
- Resolution laws are satisfied

$$I \models_{Q} \alpha \vee \beta,$$
$$I \models_{Q} \neg \beta \vee \gamma$$
$$\Rightarrow I \models_{Q} \alpha \vee \gamma$$

•
$$ID_Q(K, I) = \frac{|\{p|p^I = B, p \in Var(K)\}|}{|Var(K)|}$$

 $ID_Q(K) = min_{I \models_Q K} ID_Q(K),$

$$\rightsquigarrow K = \{p, \neg q, \neg p \lor q, r \lor s\}$$

$$\stackrel{\longrightarrow}{ID_Q(K, I_1)} = \frac{1}{4}, ID_Q(K, I_2) = \frac{2}{4}
ID_Q(K, I_3) = \frac{2}{4}
ID_Q(K) = \frac{2}{4}$$

Remark:
$$ID_4(K) = ID_3(K) = ID_{LPm}(K) \le ID_Q(K)$$
 [Xiao et al., 2010]

◆□▶◆□▶◆≣▶◆≣▶ ■ かくぐ

MUS and MCS

Definition

A subset $U \subseteq K$ is an Minimal Unsatisfiable Subset (MUS), if

- *U* is unsatisfiable and
- $\forall C_i \in U, U \setminus \{C_i\}$ is satisfiable.

Definition

A subset $M \subseteq K$ is an Minimal Correction Subset (MCS), if

- \bullet $K \setminus M$ is satisfiable and
- $\forall C_i \in M, K \setminus (M \setminus \{C_i\})$ is unsatisfiable.

Example

```
Let K = \{p, \neg p, p \lor q, \neg q, \neg p \lor r\}. Then MUSes(K) = \{\{p, \neg p\}, \{\neg p, p \lor q, \neg q\}\} and MCSes(K) = \{\{\neg p\}, \{p, p \lor q\}, \{p, \neg q\}\}.
```

Inconsistency Measurement by MUSes and MCSes

[Hunter and Konieczny, 2008]

The MI inconsistency measure is defined as the numbers of minimal inconsistent sets of $K: I_{MI}(K) = |MUSes(K)|$. (minimal inconsistent sets = minimal unsatisfiable subsets)

Example

Let
$$K = \{p, \neg p, p \lor q, \neg q, \neg p \lor r\}.$$

- $MUSes(K) = \{ \{p, \neg p\}, \{\neg p, p \lor q, \neg q\} \}$
- $I_{MI}(K) = 2$
- Note that $I_{MI}(K)$ can be exponentially large

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへで

Why another Inconsistency Measurement?

- Combination of Semantics and Syntax based IDs
 - ► Shapley inconsistency measures [Hunter and Konieczny, 2006]: distribution of $ID_{\{4,Q,...\}}$ among different formulas
 - Ours: combination of semantics and syntax based IDs in the KB level
- Expected properties:
 - **Easier** to compute than I_{MI} :
 - I_{MI} tends to be difficult to compute or approximate because of exponentially many MUSes
 - More intuitive:
 - * For $K = \{a \land \neg a\}$ and $K' = \{a \land \neg a \land b \land \neg b\}$, we have $I_{MI}(K) = I_{MI}(K') = 1$, which is unintuitive
 - ★ Later we see *ID*₄ tends to be "small", while *ID*_Q tends to be "large"

Outline

- Motivation
- 2 Preliminaries
- 3 Inconsistency Measurement by Variables in MUSes
- 4 Computational Complexities
- Experiments
- 6 Summary

Inconsistency Measurement by Variables in MUSes

Definition

For a given set of variables S and a given knowledge base K such that $Var(K) \subseteq S$, its MUS-variable based inconsistency degree, written $ID_{MUS}(K)$, is defined as:

$$ID_{MUS}(K) = \frac{|Var(MUSes(K))|}{|S|}$$
.

Example

Let
$$K = \{p, \neg p, p \lor q, \neg q, \neg p \lor r\}$$
 and $S = Var(K) = \{p, q, r\}$, $MUSes(K) = \{\{p, \neg p\}, \{\neg p, p \lor q, \neg q\}\}$. Then $ID_{MUS}(K) = 2/3$.

Example

For
$$K = \{a \land \neg a\}$$
 and $K' = \{a \land \neg a \land b \land \neg b\}$, let $S = Var(K) \cup Var(K') = \{a, b\}$. Then we have $MUSes(K) = \{\{a \land \neg a\}\}$ and $MUSes(K') = \{\{a \land \neg a \land b \land \neg b\}\}$, $ID_{MUS}(K) = 1/2$ and

Inconsistency Measurement by Variables in MCSes

Similarly to $ID_{MUS}(K)$, we can define another inconsistency degree through MCS as follows:

Definition

For a given set of variables S and a given knowledge base K such that $Var(K) \subseteq S$, its MCS-variable based inconsistency degree, written $ID_{MCS}(K)$, is defined as follows:

$$ID_{MCS}(K) = \frac{|Var(MCSes(K))|}{|S|}.$$

Example

Let
$$K = \{p, \neg p, p \lor q, \neg q, \neg p \lor r\}$$
 and $S = Var(K)$, $MCSes(K) = \{\{\neg p\}, \{p, p \lor q\}, \{p, \neg q\}\}$, then $ID_{MCS}(K) = 2/3$.

$ID_{MUS} = ID_{MCS}$

- MUSes(K) and MCSes(K) are hitting sets dual of each other [Liffiton and Sakallah, 2008]
- $\Rightarrow \bigcup MUSes(K) = \bigcup MCSes(K)$
- $\Rightarrow Var(\bigcup MUSes(K)) = Var(\bigcup MCSes(K))$
- $\Rightarrow ID_{MUS}(K) = ID_{MCS}(K)$

In the rest of the talk, the discussion is only about $ID_{MUS}(K)$,

ID₄ and ID_{MUS}

Corollary

Let U be an MUS, then $ID_4(U) = 1/|Var(U)|$.

The following theorem shows that $ID_4(K)$ can be determined by the cardinality minimal hitting sets of MUSes(K).

Theorem

For a given KB K,

$$ID_4(K) = \frac{min_H\{|H| \mid \forall U \in MUSes(K), Var(U) \cap H \neq \emptyset\}}{|Var(K)|}$$

Corollary

 $ID_{MUS}(K) \geq ID_4(K)$.

ID_Q and ID_{MUS}

Lemma

Let U be an MUS, then U has only one Q-model which assigns B to all of its variables. Hence $ID_Q(U)=1$.

Proposition

Let K be a KB and $\mathcal{I} \in PM_Q(K)$, then $Conflict(\mathcal{I},K) \supseteq Var(MUSes(K))$.

Corollary

Let K be a KB, then $ID_Q(K) \ge ID_{MUS}(K)$.

Outline

- Motivation
- 2 Preliminaries
- 3 Inconsistency Measurement by Variables in MUSes
- 4 Computational Complexities
- Experiments
- 6 Summary

Complexity Results

- $ID\text{-}MUS_{\geq k}$: Given a CNF KB, and a number k, deciding $ID_{MUS}(K) \geq k$.
- ID-MUS: Functional complexity of computing ID_{MUS}

Problem	Complexity
$ID-MUS_{\geq k}$	Σ_2^p -complete
$ID ext{-}MUS_{\leq k}$	Π_2^p -complete
$ID-MUS_{=k}^{-}$	$D_2^{\overline{p}}$ -complete
ID-MUS	$- FP^{\Sigma_2^p[log]}$

Table: Complexity Results

- All the results are in the second layer of polynomial hierarchy
- Recall that ID_4 and ID_Q are in first layer

Outline

- Motivation
- 2 Preliminaries
- Inconsistency Measurement by Variables in MUSes
- 4 Computational Complexities
- 5 Experiments
- 6 Summary

Anytime Algorithm

- Using MCS finder to find MCSes(K)
- Update ID_{MUS} by newly found MCS

```
Algorithm: Anytime Algorithm for ID_{MUS}(K);
Input: K: KB as a set of clauses
Output: ID_{MIIS}(K)
B \leftarrow \{\}
                                                            // variable set
N \leftarrow |Var(K)|
foreach M \in MCSes(K)
                                                        // call MCS finder
do
   B \leftarrow B \cup Var(M)
                                                                 // update B
   id \leftarrow |B|/N
                                               // new idmus lower bound
   print 'id_mus(K) \geqslant ', id
end
print 'id_mus(K) = ', id
return id
```

Prototype Implementation

- prototype implementation, called CAMUS_IDMUS
- by adapting the source code of CAMUS_MCS 1.02^1 .

¹http://www.eecs.umich.edu/~liffiton/camus/ < = > < 5 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2

Experiments

Table: Evaluation of CAMUS_IDMUS on DC Benchmark

Instance	#V	#C	#M	#4	#Q	#VM	Т
C168_FW_SZ_41	1,698	5,387	>30,104	1	211	> 124	600.00
C168_FW_SZ_66	1,698	5,401	>16,068	1	182	> 69	600.00
C168_FW_SZ_75	1,698	5,422	>37,317	1	198	> 116	600.00
C168_FW_SZ_107	1,698	6,599	>51,597	1	189	> 92	600.00
C168_FW_SZ_128	1,698	5,425	>25,397	1	211	> 66	600.00
C168_FW_UT_2463	1,909	7,489	>109,271	1	436	> 168	600.00
C168_FW_UT_2468	1,909	7,487	>54,845	1	436	> 138	600.00
C168_FW_UT_2469	1,909	7,500	>56,166	1	436	> 150	600.00
C168_FW_UT_714	1,909	7,487	>84,287	1	436	> 92	600.00
C168_FW_UT_851	1,909	7,491	30	1	436	11	0.35
C168_FW_UT_852	1,909	7,489	30	1	436	11	0.35
C168_FW_UT_854	1,909	7,486	30	1	436	11	0.35
C168_FW_UT_855	1,909	7,485	30	1	436	11	0.35
C170_FR_SZ_58	1,659	5,001	177	1	157	54	0.46
C170_FR_SZ_92	1,659	5,082	131	1	163	46	0.10
C170_FR_SZ_95	1,659	4,955	175	1	23	23	0.20
C170_FR_SZ_96	1,659	4,955	1,605	1	125	43	0.36

Anytime Property of CAMUS_IDMUS

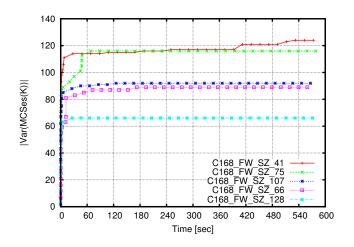


Figure: Anytime Property of CAMUS_IDMUS

Outline

- Motivation
- Preliminaries
- Inconsistency Measurement by Variables in MUSes
- 4 Computational Complexities
- Experiments
- **6** Summary

Summary

- ID_{MUS}: inconsistency measurement by counting variables in MUSes
- $ID_4 \leq ID_{MUS} = ID_{MCS} \leq ID_Q$
- Complexity of ID_{MUS} is intractable: second layer of polynomial hierarchy
- The anytime algorithm and experiments show feasibility
- As a by-product, the relationship between MUSes, 4-models, Q-models are also interesting: informally, variables in MUSes(K) are in between of the minimal 4-models and Q-models

Future Work

- Different inconsistency measurements have different views on inconsistency, we should combine them
- More efficient algorithm and implementations are needed

References

Grégoire, É., Mazure, B., and Piette, C. (2007).

Boosting a complete technique to find MSS and MUS thanks to a local search oracle. In Veloso, M. M., editor, *IJCAI*, pages 2300–2305.

Hunter, A. and Konieczny, S. (2006).

Shapley inconsistency values.

In Proc. of KR'06, pages 249-259.

Hunter, A. and Konieczny, S. (2008).

Measuring inconsistency through minimal inconsistent sets.

In Proc. of KR'08, pages 358-366.

Liffiton, M. H. and Sakallah, K. A. (2008).

Algorithms for computing minimal unsatisfiable subsets of constraints.

J. Autom. Reasoning, 40(1):1–33.

Xiao, G., Lin, Z., Ma, Y., and Qi, G. (2010).

Computing inconsistency measurements under multi-valued semantics by partial max-SAT solvers.

In Proc. of KR'10, pages 340-349.

Thanks!

MUS/MCS Finders

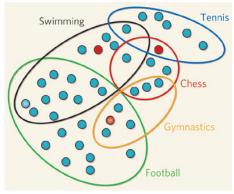
The state-of-the-art MCS/MUS finders are highly optimized Some of them are

- CAMUS (open sourced) [Liffiton and Sakallah, 2008],
- HYCAM [Grégoire et al., 2007].

Common steps in MUSes finders:

- 1. Computing MCSes with an incremental SAT solver
- 2. Using Hitting sets algorithm to find MUSes

Hitting Set



http://www.nature.com/nature/journal/v451/n7179/fig_tab/451639a_F1.html

- H is a hitting set of a set of sets Ω if $\forall S \in \Omega, H \cap S \neq \emptyset$.
- A hitting set H is irreducible if there is no other hitting set H', s.t. H' ⊊ H.
- Remark: Hitting set problem in NP-complete

MUS/MCS Duality

Theorem [Liffiton and Sakallah, 2008]

Given an inconsistent knowledge base K:

- A subset M of K is an MCS of K iff M is an irreducible hitting set of MUSes(K);
- A subset U of K is an MUS of K iff U is an irreducible hitting set of MCSes(K).

Example

Let $K = \{p, \neg p, p \lor q, \neg q, \neg p \lor r\}.$

- $\bullet \; \mathit{MUSes}(K) = \{ \{p, \neg p\}, \; \{\neg p, p \lor q, \; \neg q\} \}$
- $MCSes(K) = \{ \{ \neg p \}, \{ p, p \lor q \}, \{ p, \neg q \} \}.$

Clearly, MUSes(K) and MCSes(K) are hitting set duals of each other.