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Background

@ Consistent KBs are useful, but inconsistent KBs imply any conclusion
(meaningless!)

@ Inconsistency measurement:
from “is inconsistent” to “how inconsistent”

@ ldeas and approaches:

based on different views of atomicity of inconsistency
Semantics based approaches

Syntax based approaches

Semantics - syntax combined approaches (this paper)

vV vy VvVYyy
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Inconsistency Measurement by Multi-valued Semantics
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Inconsistency Measurement by Multi-valued Semantics

@ Multi-Valued Semantics

» 4-valued, 3-valued, LP,,, Quasi-Classical, ...
» | : Var(K) — {t, f, Both, None}
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Inconsistency Measurement by Multi-valued Semantics

@ Multi-Valued Semantics

» 4-valued, 3-valued, LP,,, Quasi-Classical, ...
» | : Var(K) — {t, f, Both, None}

@ ID of K respect to I/ under i-semantics (i = 3,4, LPp,, Q)

{p|p' =B,pe Var(K)}|
| Var(K))

IDi(K, 1) = il K
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Inconsistency Measurement by Multi-valued Semantics

@ Multi-Valued Semantics

» 4-valued, 3-valued, LP,,, Quasi-Classical, ...
» | : Var(K) — {t, f, Both, None}

@ ID of K respect to I/ under i-semantics (i = 3,4, LPp,, Q)
{p|p' = B,pe Var(K)}|
Var(K)|
@ ID of K under under i-semantics (i = 3,4, LPp,, Q)

IDi(K, 1) =

il K

IDi(K) = min_ID(K. 1)
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Inconsistency Degree under 4-valued Semantics

Truth values: {t,f, B, N} o ID4(K, 1) = I{PIP’T\if(GK\;Tr(K)}I
4-model /: ID4(K) = min;—, k ID4(K),
K — {t,B}

) ~ K={p,~q,=pVgq,rVs}
BoTH A L L _ L _
~ o ph =B, gh =f,r't =t,s" =t,
F : L:pht=Bglt=Brk=tshk=t
Ih:ph=Bgh=B,rB=tst=N
NONE t ~ ID4(K, h) =7, IDy(K, h) = 2
ID4(K, Ig) =

ID4(K) = 1

1
47
2
4

Figure : Four-Valued Logic
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Inconsistency Degree under Quasi-Classical Semantics

Quasi-Classical (Q)
interpretation:

@ 4-valued interpretation

@ Resolution laws are
satisfied

I'=q Vv B,
I Eq -BVy
=lEqaVy

Remark: ID4(K) = ID3(K) =

G. Xiao & Y. Ma (TU Wien & TU Dresden)

= r
o IDo(K,I) = I{plp \\i;f(eK‘;T (K)}]

IDQ(K) = miny,kIDg(K),

~ K={p,—q,-pVq,rVs}

v feph =B gh — £ ph — ¢ ¢
L:ph=Bgk=Brk=tshk=t
:ph=Bqgl=Brb=tsh=N

~ 1Pkt =—+ IDo(K, h) = 2
IDo(K, k) =3

IDo(K) = §

ID1pm(K) < IDo(K) [Xiao et al., 2010]
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MUS and MCS
Definition
A subset U C K is an Minimal Unsatisfiable Subset (MUS), if

@ U is unsatisfiable and
o VG € U, U\ {G} is satisfiable.

Definition

A subset M C K is an Minimal Correction Subset (MCS), if
e K\ M is satisfiable and
o VG e M,K\ (M\ {G}) is unsatisfiable.

Example

Let K = {p,~p,pV q,~q,~pV r}. Then
MUSes(K) = {{p, ~p},{—P, PV q,—~q}} and
MCSes(K) = {{-p},{p.pV a},{p,q}}.
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Inconsistency Measurement by MUSes and MCSes

[Hunter and Konieczny, 2008]

The MI inconsistency measure is defined as the numbers of minimal
inconsistent sets of K: Iy (K) = |MUSes(K)|.

(minimal inconsistent sets = minimal unsatisfiable subsets)

Example

Let K ={p, =p, PVaq, —q, —pVr}.

o MUSes(K) = {{p,—p}, {-pP,pVaq, —q}}
4 IM/(K) =2

@ Note that /py(K) can be exponentially large
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Why another Inconsistency Measurement?

@ Combination of Semantics and Syntax based IDs
» Shapley inconsistency measures [Hunter and Konieczny, 2006]:
distribution of IDy4 q,...; among different formulas
» Ours:
combination of semantics and syntax based IDs in the KB level

@ Expected properties:
» Easier to compute than /ly:
* [y tends to be difficult to compute or approximate because of
exponentially many MUSes
» More intuitive:
* For K={aA—a}and K' = {aA—aAbA-b}, we have
Iwi(K) = Iwi(K') = 1, which is unintuitive
* Later we see /Dy tends to be “small”,
while IDg tends to be “large”
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Inconsistency Measurement by Variables in MUSes
Definition
For a given set of variables S and a given knowledge base K such that

Var(K) C S, its MUS-variable based inconsistency degree, written
IDpuys(K), is defined as:

IDas(K) = \Vaf(’V’|USS‘eS(K))! .

Example
Let K ={p,—p,pV q,—q,—-pVr}and S = Var(K) = {p,q,r},
MUSGS(K) = {{pa _‘p}v {_‘pa pPVaq, _‘q}} Then /DMUS(K) = 2/3

Example

For K ={aA—a} and K" = {aA—a A bA-b} let
S = Var(K) U Var(K’) = {a, b}. Then we have MUSes(K) = {{a A —a}}
and MUSes(K") = {{aA—a A bA-b}}, IDyus(K) =1/2 and

G. Xiao & Y. Ma (TU Wien & TU Dresden) 5 " EcAl2012  12/31



Inconsistency Measurement by Variables in MCSes

Similarly to IDpys(K), we can define another inconsistency degree
through MCS as follows:

Definition
For a given set of variables S and a given knowledge base K such that

Var(K) C S, its MCS-variable based inconsistency degree, written
IDpes(K), is defined as follows:

| Var(MCSes(K))|
Bl '

IDpes(K) =

Example

Let K = {p,=p,pV q,—q,~pV r} and S = Var(K),
MCSes(K) = {{-p}.{p,pV q},{p,~q}}, then IDycs(K) = 2/3.
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IDymuys = IDyics

@ MUSes(K) and MCSes(K) are hitting sets dual of each other
[Liffiton and Sakallah, 2008]

= |JMUSes(K) = |J MCSes(K)
= Var(|y MUSes(K)) = Var(l MCSes(K))
= IDMUS(K) = /DMC§(K)

In the rest of the talk, the discussion is only about IDpys(K),

G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012
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/D4 and /DI\/IUS

Corollary
Let U be an MUS, then ID4(U) = 1/|Var(U)|. J

The following theorem shows that /D4(K) can be determined by the
cardinality minimal hitting sets of MUSes(K).

Theorem
For a given KB K,

ming{|H| | VU € MUSes(K), Var(U) N H # (1}

DalK) = [Var(K)

Corollary
IDymus(K) > ID4(K).
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/DQ and IDMUS

Lemma

Let U be an MUS, then U has only one Q-model which assigns B to all of
its variables. Hence IDg(U) = 1.

o

Proposition
Let K be a KB and T € PMg(K), then Conflict(Z, K) O Var(MUSes(K)).

v

Corollary

Let K be a KB, then IDg(K) > IDpmuys(K).
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Complexity Results

@ ID-MUS> : Given a CNF KB, and a number k, deciding

IDpmus(K) > k.

@ ID-MUS: Functional complexity of computing IDyys

Problem

Complexity

ID-MUS>,
ID-MUS<
ID-MUS_,
ID-MUS

Y 0-complete
MN5-complete
Df-complete

FPZ;[Iog]

Table : Complexity Results

@ All the results are in the second layer of polynomial hierarchy

@ Recall that ID4 and IDg are in first layer
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Anytime Algorithm

e Using MCS finder to find MCSes(K)
e Update IDpyys by newly found MCS

Algorithm: Anytime Algorithm for IDyys(K);
Input: K: KB as a set of clauses
Output: IDyys(K)

B+ {} // variable set

N < |Var(K)|

foreach M € MCSes(K) // call MCS finder

do
B «+ B U Var(M) // update B
id < |B|/N // new idmus lower bound
print ‘id_mus(K) > ', id

end

print ‘id_mus(K) =, id

return id
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Prototype Implementation

@ prototype implementation, called CAMUS_IDMUS
@ by adapting the source code of camus_mcs 1.02.

'http://www.eecs.umich.edu/~1iffiton/camus/
G. Xiao & Y. Ma (TU Wien & TU Dresden) ECAI 2012
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Experiments

Table : Evaluation of caAMuUS_IDMUS on DC Benchmark

Instance #V  #C #M #4 #Q #VM T
C168.FW_SZ 41 1,698 5,387 >30,104 1 211 > 124 600.00
C168_.FW_.SZ_66 1,698 5401 >16,068 1 182 > 69 600.00
C168.FW_SZ_75 1,698 5,422 >37,317 1 198 > 116 600.00
C168_.FW_SZ_107 1,698 6,599 >51,597 1 189 > 92 600.00
C168_-FW_SZ_128 1,698 5,425 >25397 1 211 > 66 600.00

C168_.FW_UT_2463 1,909 7,489 >109,271 1 436 > 168 600.00
C168_.FW_UT_2468 1,909 7,487 >54,845 1 436 > 138 600.00
C168_-FW_UT_2469 1,909 7,500 >56,166 1 436 > 150 600.00
C168_.FW_UT_714 1,909 7,487 >84,287 1 436 > 92 600.00
C168_FW_UT_851 1,909 7,491 30 1 436 11 0.35
C168_-FW_UT_852 1,909 7,489 30 1 436 11 0.35
C168_.FW_UT_854 1,909 7,486 30 1 436 11 0.35
C168_-FW_UT_855 1,909 7,485 30 1 436 11 0.35
C170-FR.SZ_58 1,659 5,001 177 1 157 54 0.46
C170_.FR.SZ_92 1,659 5,082 131 1 163 46 0.10
C170_.FR.SZ 95 1,659 4,955 175 1 23 23 0.20
C170_.FR.SZ.96 1,659 4,955 1,605 1 125 43 0.36
ECAI 2012
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Anytime Property of CAMUS_IDMUS
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Figure : Anytime Property of CAMUS_IDMUS
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Summary

@ IDpys: inconsistency measurement by counting variables in MUSes
@ IDy < IDmys = IDycs < IDq

o Complexity of /Dpys is intractable: second layer of polynomial
hierarchy

@ The anytime algorithm and experiments show feasibility

@ As a by-product, the relationship between MUSes, 4-models,
Q-models are also interesting:

informally, variables in MUSes(K) are in between of the minimal
4-models and Q-models
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Future Work

@ Different inconsistency measurements have different views on
inconsistency, we should combine them

@ More efficient algorithm and implementations are needed
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MUS/MCS Finders

The state-of-the-art MCS/MUS finders are highly optimized Some of them
are

e CAMUS (open sourced) [Liffiton and Sakallah, 2008],
e HYCAM [Grégoire et al., 2007].

Common steps in MUSes finders:

1. Computing MCSes with an incremental SAT solver
2. Using Hitting sets algorithm to find MUSes
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Hitting Set

Swimming Tennis

@ H is a hitting set of a set of
sets QiIfVS e Q HNS # 0.

@ A hitting set H is irreducible
if there is no other hitting
set H', st. H C H.

@ Remark: Hitting set problem

in NP-complete
Football

http://www.nature.com/nature/journal/v451/n7179/
fig_tab/451639a_F1.html
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MUS/MCS Duality

Theorem [Liffiton and Sakallah, 2008]
Given an inconsistent knowledge base K:

@ A subset M of K is an MCS of K iff M is an irreducible hitting set of
MUSes(K);

@ A subset U of K is an MUS of K iff U is an irreducible hitting set of
MCSes(K).

Example

Let K={p, —p, pVq, —q, —pVr}.
o MUSes(K) = {{p,—p}, {-P.pVq, —q}}
° MCSes(K) = {{-p}, {p,pVa}, {p,—q}}.
Clearly, MUSes(K) and MCSes(K) are hitting set duals of each other.
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