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Abstract. We present in this paper an axiomatization of the structure of finite or infinite
M -extended trees. This structure is an intuitive combination of the structure of finite or
infinite trees with another structure M and expresses semantically an extension to trees
of the model M . Having a structure M = (DM , FM , RM ), we define the structure of finite
or infinite M -extended trees ExtM = (D, F, R) whose domain D consists of trees labelled
by elements of DM ∪ F , where F is an infinite set of function symbols containing FM and
another infinite set of function symbols disjoint from FM . For each n-ary function symbol
f ∈ F , the operation f(a1, .., an) is evaluated in M and produces an element of DM if
f ∈ FM and all the ai are elements of DM , or is a tree whose root is labelled by f and
whose immediate children are a1, .., an otherwise. The set of relations R contains RM and
another relation which distinguishes the elements of DM from the others. Using a first-order
axiomatization T of M , we give a first-order axiomatization T of the structure ExtM and
show that if T is flexible then T is complete. The flexible theories are particular theories
whose function and relation symbols have some elegant properties which enable us to handle
formulae more easily.

1 Introduction

Recall that a tree built on a set E is essentially a hierarchized set of nodes labelled by the elements
of E. To each element e of E corresponds an operation f , called construction operation, which,
starting from a sequence a1, . . . , an of trees, builds the tree whose top node is labelled e and whose
sequence of immediate children is a1, . . . , an.

The algebra of finite or infinite trees plays a fundamental act in computer science: it is a
model for composed data known as record in Pascal or structure in C. The construction operation
corresponds to the creation of a new record, i.e. of a cell containing an elementary information
possibly followed by n cells, each one pointing to a record. Circuit of pointers correspond to infinite
trees.

As early as 1976, G. Huet proposed an algorithm for unifying infinite terms, that is solving
equations in that algebra [11]. B. Courcelle has studied the properties of infinite trees in the scope
of recursive program schemes [6]. A. Colmerauer has described the execution of Prolog II, III
and IV programs in terms of solving equations and disequations in that algebra [4, 3, 1]. The
unification of finite terms, i.e. solving conjunctions of equations in the theory of finite trees has
first been studied by A. Robinson [18]. Some better algorithms with better complexities has been
proposed after by M.S. Paterson and M.N.Wegman [16] and A. Martelli and U. Montanari [15].
Solving conjunctions of equations in the theory of infinite trees has been studied by G. Huet [11],
by A. Colmerauer [4] and by J. Jaffar [12]. Solving conjunctions of equations and disequations in
the theory of possibly infinite trees has been studied by A. Colmerauer [4] and H.J. Bürckert [2].
An incremental algorithm for solving conjunctions of equations and disequations on rational trees
has been proposed after by V.Ramachandran and P. Van Hentenryck [17]. On the other hand,
there exists a quantification elimination algorithm which transforms a first-order formula into a
boolean combination of simple ones. In the case of infinite trees with a finite set of function symbols
we can refer to the work of M.J. Maher [14] and H. Comon [5]. M.J. Maher has summarized all
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these cases and proposed a complete axiomatizations for different sets of trees equipped with
construction operations [14].

In this paper, we give and justify an axiomatization of the structure of finite or infinite M -
extended trees. This structure is an intuitive combination of the structure of trees with another
structure M and can be seen semantically as an extension to trees of the model M . Having a
structure M = (DM , FM , RM ) together with its domain DM , its set of operations FM and its set
of relations RM , we define the M -extended trees structure ExtM = (D,F,R) whose domain D

consists of trees labelled by elements of DM ∪ F , where F is an infinite set of function symbols
containing FM and another infinite set of function symbols disjoint from FM . For each n-ary
function f ∈ F , the operation f(a1, ..., an) is evaluated in M and produces an element of DM if
f ∈ FM and all the ai are elements of DM , or is a tree whose root is labelled by f and whose
immediate children are a1, ..., an otherwise. The set of relations R is built essentialy from RM .
In the case where M is the set of rational numbers together with the operations of addition and
substraction and a linear dense order relation we can refer to Prolog III and IV whose execution
has been modelized by A. Colmerauer [4, 1] using this M -extended trees.

The paper is organized in four sections followed by a conclusion. This introduction is the
first section. In the second section we recall the Maher’s structure of finite or infinite trees and
introduce the M -extended trees structure for any model M . In the third section, we present our
general sufficient conditions for the completeness of any first-order theory. Then, having a first-
order axiomatization T ofM , we give a first-order axiomatization T of finite or infiniteM -extended
trees. Finally we present in the fourth section a new class of theories that we call flexible and show
that if T is flexible then T is complete. To show the completeness of T for any flexible theory
T we use the general sufficient conditions presented in the third section. The definition of the
M -extended trees, the axiomatization of T , the definition of flexible theories and the proof of the
completeness of T for every flexible theory T are our main contribution in this paper.

2 Extension to trees of a model M

2.1 Finite or infinite trees

Let F be an infinite set of function symbols and R be a set of relation symbols. To each element
of F ∪R is associated an integer, its arity. The arities are non-negative for elements of F and are
positive for elements of R. An n-ary symbol is a symbol with arity n. A constant is a 0-ary symbol.

Let N be a set of words of positive integers, including the empty word ε. Let “.” denote
concatenation of word. A tree built on F is a mapping a : E → F , for some non-empty subset
E of N such that each element i1 . . . ik (with k ≥ 0) satisfies two conditions: (1) if k > 0 then
i1 . . . ik−1 ∈ E and (2) if a(i1 . . . ik) = f and f has arity n, then i1 . . . ikik+1 ∈ E if and only if
1 ≤ ik+1 ≤ n.

The subtree of the tree a at n ∈ E is the mapping a′ : E′ → F where D′ = {d|n.d ∈ E} and
a′(d) = a(n.d).

The set of all trees built on F is denoted A. To each n-ary function symbol f we associate a
function from An to A also denoted f such that f(a1, . . . , an) = a where a(ε) = f and a(i.d) = ai(d)
for 1 ≤ i ≤ n and d a node. These functions are called construction operations. The set of trees A
with these construction operations forms the trees structure or trees algebra.

2.2 Finite or infinite M-extended trees structure

We are given now once for all a structure M = (DM , FM , RM ) with its domain DM , its set of
functions FM and its set of relations RM . Let F be an infinite set of function symbols containing
the set FM and another infinite set of function symbols disjoint from FM . Let R be the set of
relation symbols RM ∪ {p}, with p a unary relation symbols which does not belong to RM . The
extension to trees of the model M , quite simply called M -extended trees model is the model
ExtM = (D,F,R) defined as follows:
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– the domain D is the set of the trees built on F ∪DM where each element f ∈ F of arity n is
considered as a label of arity n and each element of DM is considered as a label of arity 0,

– to each n-ary element f of F is associated a function f : Dn → D such that f(a1, .., an) is
the result of f on (a1, .., an) in DM , if f ∈ FM and ai ∈ DM for all i, and is the result of the
construction operation f on (a1, .., an) otherwise,

– to each n-ary relation symbols r of R − {p} is associated the set rExtM = rM . To the unary
relation symbols p is associated the set pExtM = DM .

3 Theory of finite or infinite M -extended trees

Let V an infinite countable set of variables. A term is an expression of the form x or ft1 . . . tn
where n ≥ 0, f an n-ary symbol in F and the ti’s are shorter terms. A M -term is either a variable
or a term whose function symbols are elements of FM . A formula is an expression of the forms

s= t, rt1..tn, true, false, ¬(ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ψ), (ϕ↔ψ), ∃xϕ, ∀xϕ,

where x ∈ V , s, t and the ti’s are terms, r is an n-ary relation symbol in R and ϕ and ψ are
shorter formulae. Formulae of the first form are called equations and of the second form relations.
A M -equation is an equation of M -terms and a M -relation is a relation rt1...tn with r ∈ RM and
the ti’s M -terms.

An occurrence of a variable x in a formula is bound if it occurs in a sub-formula of the form
(∃xϕ) or (∀xϕ). It is free otherwise. The free variables of a formula are those which have at least a
free occurrence in the formula. For each formula ϕ, we denote by var(ϕ) the set of all free variables
of ϕ.

We call instantiation of a formula ϕ by individuals of DM the obtained formula from ϕ in
which for each free variable x in ϕ, we replace each free occurrence of x by the same individual i
of DM .

3.1 Theory and complete theory

Let x̄ = x1 . . . xn and ȳ = y1 . . . yn be two vectors of variables of the same length. Let ψ, φ, ϕ and
ϕ(x̄) be formulae. We write

∃x̄ ϕ for ∃x1...∃xn ϕ,
∀x̄ ϕ for ∀x1...∀xn ϕ,
∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) →

∧

i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

Note that the formulae ∃?εϕ and ∃!εϕ are respectively equivalent to true and to ϕ in any model
M . Theses quantifiers are just convenient notations and can be expressed in the first-order level.

Definition 3.1.1 Let Ψ(u) be a set of formulas having at most u as a free variable. We write

M |= ∃
Ψ(u)
o ∞ xϕ(x), iff for any instantiation ∃xϕ′(x) of ∃xϕ(x) by individuals of DM one of the

following properties holds:

– the set of the individuals i of DM such that M |= ϕ′(i), is empty,
– for all finite sub-set {ψ1(u), .., ψn(u)} of elements of Ψ(u), the set of the individuals i of DM

such that M |= ϕ′(i) ∧
∧

j∈{1,...,n} ¬ψj(i) is infinite.

A theory is a set of propositions. We say that the model M is a model of T iff for each element
ϕ of T , M |= ϕ. If ϕ is a formula, we write T |= ϕ iff for each model M of T , M |= ϕ. A theory
T is complete if for each proposition ϕ, either T |= ϕ or T |= ¬ϕ. A complete axiomatization of
a structure M is a recursive set T of propositions such that for each proposition ϕ, T |= ϕ iff
M |= ϕ.
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In what follows we use the abbreviation wnfv for “without new free variables”. By saying a
formula ϕ is equivalent to a wnfv formula ψ in T we mean T |= ϕ ↔ ψ and ψ does not contain
other free variables than those of ϕ. The following theorem states general sufficient conditions for
the completeness of a theory T .

Theorem 3.1.2 [9, 10] A theory T is complete if there exists a set Ψ(u) of formulas, having at
most u as free variable, a set A of formulas, closed under conjunction and renaming, a set A′ of
formulas of the form ∃x̄α with α ∈ A, and a sub-set A′′ of A such that:

1. every flat atomic formula is equivalent in T to a wnfv Boolean combination of basic formulas
of the form ∃x̄α with α ∈ A,

2. every formula without free variables of the form ∃x̄′α′ ∧ α′′ with ∃x̄′α′ ∈ A′ and α′′ ∈ A′′ is
equivalent either to false or to true in T ,

3. every formula of the form ∃x̄ α ∧ ψ, with α ∈ A and ψ any formula, is equivalent in T to a
wnfv formula of the form:

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)),

with ∃x̄′ α′ ∈ A′, α′′ ∈ A′′, α′′′ ∈ A and T |= ∀x̄′′α′′ → ∃!x̄′′′α′′′,
4. if ∃x̄′α′ ∈ A′ then T |= ∃?x̄′ α′ and for each free variable y in ∃x̄′α′, at least one of the

following properties holds:
– T |= ∃?yx̄′ α′,
– there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y),

5. if α′′ ∈ A′′ then
– the formula ¬α′′ is equivalent in T to a wnfv formula of the form

∨

i∈I αi with αi ∈ A,
– for each x′′, the formula ∃x′′α′′ is equivalent in T to a wnfv formula which belongs to A′′,

– for each x′′, T |= ∃
Ψ(u)
o ∞ x′′ α′′.

3.2 Axiomatization of the structure of M-extended trees

M. Maher has introduced a complete axiomatization of the structure of finite or infinite trees built
on an infinite set F [14]. The axiomatization is the set of propositions of the following forms:

1 ∀x̄∀ȳ f x̄ = fȳ →
∧

i xi = yi,

2 ∀x̄∀ȳ ¬fx̄ = gȳ,

3 ∀x̄∃!z̄
∧

i zi = ti(z̄, x̄),

where f, g ∈ F , x, y, z are variables, x̄ is vector of variables xi, ȳ is vector of variables yi, z̄ is
vector of distinct variables zi and where ti(x̄, z̄) is a term which begins by an element of F followed
by variables taken from x̄ or z̄.

The first axiom is called axiom of explosion, the second axiom of conflict of symbols and the
third axiom of unique solution.

Let T be an axiomatization of the structureM = (DM , FM , RM ). Using this axiomatization, let
us now define an axiomatization T of the structure of finite or infinite M -extended trees together
with the sets F and R (defined in section 2.2) as function and relation symbols.

Definition 3.2.1 An axiomatization T of the structure of finite or infinite M -extended trees is
the set of propositions of the following forms where x̄, ȳ are vectors of variables xi, yi.

1. explosion: for each f ∈ F

∀x̄∀ȳ ¬pfx̄ ∧ ¬pfȳ ∧ fx̄ = fȳ →
∧

i

xi = yi

2. conflict of symbols: for f and g distinct symbols in F

∀x̄∀ȳ f x̄ = gȳ → pfx̄ ∧ pgȳ
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3. unique solution

∀x̄∀ȳ (
∧

i

pxi) ∧ (
∧

j

¬pyj) → ∃!z̄
∧

k

(pzi ∧ zk = tk(x̄, ȳ, z̄))

where z̄ is a vector of distinct variables zi, tk(x̄, ȳ, z̄) is a term expressed by a function symbol
fk followed by variables taken from x̄, ȳ, z̄, moreover, if fk ∈ FM , the term tk(x̄, ȳ, z̄) contains
at least one variable from ȳ or z̄

4. relations of RM : for each r ∈ RM ,

∀x̄ rx̄→
∧

i

pxi

5. operations of FM : for each f ∈ FM ,

∀x̄ pfx̄↔
∧

i

pxi

(this axiom, in the case of f a constant in FM , becomes pf)

6. elements not in M : for each f ∈ F − FM ,

∀x̄ ¬pfx̄

7. existence of at least one element satisfying p (only if FM does not contains 0-arity function
symbols):

∃xpx,

8. the extension of axioms of T : all axioms obtained by the following transformation of an axiom
ϕ of T : While it is possible replace all sub-formula of ϕ which is of the form ∃x̄ ψ, but not
of the form ∃x̄ (

∧
pxi) ∧ ψ

′, by ∃x̄ (
∧

pxi) ∧ ψ and all sub-formula of ϕ which is of the form
∀x̄ ψ, but not of the form ∀x̄ (

∧
pxi) → ψ′, by ∀x̄ (

∧
pxi) → ψ.

Example 3.2.2 Let M be the structure of the rational numbers together with the operations of
addition, substraction and a linear dense order relation without endpoints. In this case DM is the
set of the rational numbers, FM = {+,−, 0, 1} and RM = {<}. Let a be a positive integer and let
t1, ..., tn be terms. Let us denote by:

– t1 < t2, the term < t1t2,
– t1 + t2, the term +t1t2,
– t1 + t2 + t3, the term +t1(+t2t3),
– −at1, the term (−t1) + · · · + (−t1)

︸ ︷︷ ︸

a

,

– 0t1, the term 0,
– at1, the term t1 + · · · + t1

︸ ︷︷ ︸

a

,

– a the term 1 + · · · + 1
︸ ︷︷ ︸

a

.

The axiomatization T of the structure M is of the form

1 ∀x∀y x+ y = y + x,

2 ∀x∀y∀z x+ (y + z) = (x+ y) + z,

3 ∀xx+ 0 = x,

4 ∀xx+ (−x) = 0,
5n ∀xnx = 0 → x = 0,
6n ∀x∃!y ny = x, (n 6= 0)

7 ∀x¬x < x,

8 ∀x∀y∀z (x < y ∧ y < z) → x < z,

9 ∀x∀y (x < y ∨ x = y ∨ y < x),
10 ∀x∀y x < y → (∃z x < z ∧ z < y),
11 ∀x∃y x < y,

12 ∀x∃y y < x,

13 ∀x∀y ∀z x < y → (x+ z < y + z),
14 0 < 1.
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Using the transformations of Definition 3.2.1, the axiomatization T of the M -extended trees
theory is of the form:

1 ∀x̄∀ȳ ((¬p fx̄) ∧ (¬p fȳ) ∧ fx̄ = fȳ) →
∧

i xi = yi,

2 ∀x̄∀ȳ f x̄ = gȳ → p fx̄ ∧ p gȳ,

3 ∀x̄∀ȳ (
∧

i∈I pxi) ∧ (
∧

j∈J ¬p yj) → (∃!z̄
∧

k∈K(¬p zk ∧ zk = tk(x̄, ȳ, z̄))),

4 p0,
5 p1,
6 ∀x∀y x < y → (p x ∧ p y),
7 ∀x∀y px+ y ↔ px ∧ p y,

8 ∀xp − x↔ px,

9 ∀x̄¬p hx̄ ,
10 ∀x∀y (px ∧ p y) → x+ y = y + x,

11 ∀x∀y∀z (px ∧ p y ∧ p z) → x+ (y + z) = (x+ y) + z,

12 ∀xpx→ x+ 0 = x,

13 ∀xpx→ x+ (−x) = 0,
14n ∀xpx→ (nx = 0 → x = 0),
15n ∀xpx→ ∃!y p y ∧ ny = x, (n 6= 0)
16 ∀xp x → ¬x < x ,
17 ∀x∀y∀z p x ∧ p y ∧ p z → ((x < y ∧ y < z ) → x < z ),
18 ∀x∀y (p x ∧ p y) → (x < y ∨ x = y ∨ y < x ),
19 ∀x∀y (p x ∧ p y) → (x < y → (∃z p z ∧ x < z ∧ z < y)),
20 ∀xp x → (∃y p y ∧ x < y),
21 ∀xp x → (∃y p y ∧ y < x ),
22 ∀x∀y ∀z (p x ∧ p y ∧ p z ) → (x < y → (x + z < y + z )),
23 0 < 1,

where f and g are two distinct function symbols taken from F , h ∈ F −FM , x, y, z are variables,
x̄ is a vector of variables xi, ȳ is a vector of variables yi, z̄ is vector of distinct variables zi and
where tk(x̄, ȳ, z̄) is a term which begins by a function symbol fk element of F followed by variables
taken from x̄ or ȳ or z̄, moreover, if fk ∈ FM then tk(x̄, ȳ, z̄) contains at least a variable taken
from ȳ or z̄. This theory has been used by A. Colmerauer to modelize the execution of Prolog III
and IV [4, 1].

4 Completeness of T

We suppose that the variables of V are ordered by a strict linear dense order relation denoted by
�. We call leader of an M -equation α the greatest variable x of all variables in α, according to
the order �, such that M |= ∃!xα.

4.1 Flexible structure

The model M is called flexible if for each conjunction α of M -equations and each conjunction β

of M -relations:

1. α is equivalent in M either to false or to a wnfv conjunction α′ of M -equations whose each
element has a distinct leader which has one and only occurrence in α′, and for all variable
x ∈ var(α′) we have M |= ∃!xα′,

2. if β does not contain variables then M |= β or M |= ¬β,
3. the formula ¬β is equivalent in M to a wnfv disjunction of M -equations and M -relations,
4. for all x ∈ V

– the formula ∃xβ is equivalent in M either to false or to a quantifier free conjunction of
M -relations,
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– for all x ∈ V and for all instantiation ∃xβ ′(x) of ∃xβ(x) by individuals of DM , either
M |= ¬∃xβ′(x) or there exists an infinite set of individuals i of DM such that M |= β′(i).

A theory T is called flexible iff all its models are flexible.

Property 4.1.1 If T is flexible then it is complete.

4.2 Blocks and solved blocks in T

Definition 4.2.1 A block is a conjunction α of formulae of the following forms:

– true, false, px, ¬px,
– x = y, x = fx1 . . . xn, with f ∈ F ,
– t1 = t2 ∧

∧n

i=1 pxi, where {x1, . . . , xn} is the set of variables which occur in the M -equation
t1 = t2,

– rt1 . . . tn, where r ∈ RM and the ti’s are M -terms,

and such that α contains px or ¬px for each variable x ∈ var(α). A relation block is a block
without equations. An equation block is a block without M -relations and where each variable has
an occurrence in at least one equation.

Definition 4.2.2 If a block α has a sub-formula of the form

x0 = t0(x1) ∧ x1 = t1(x2) ∧ · · · ∧ xn−1 = tn−1(xn) ∧
n−1∧

i=0

¬pxi,

where xi+1 has an occurrence in the term ti(xi+1), then the variable xn and the equation xn−1 =
tn−1(xn) are called reachable from x0 in α.

Property 4.2.3 Let α be a block. If all the variables of x̄ are reachable in α from free variables
of ∃x̄α, then T |= ∃?x̄α.

Definition 4.2.4 A block α is called well-typed iff α does not contain sub-formulae of one of the
following forms:

– p x ∧ ¬p x ,
– x = hȳ ∧ p x , with h ∈ F − FM ,
– x = f0 ∧ ¬p x , with f0 a constant of FM ,
– x0 = fx1...xn ∧ ¬px0 ∧

∧n

i=1 pxi, with f ∈ FM ,
– x0 = fx1...xn ∧ px0 ∧ ¬pxi, with f ∈ F
– x0 = x1 ∧ px0 ∧ ¬px1,
– x0 = x1 ∧ ¬px0 ∧ px1,
– rt1...tn ∧ ¬pxi with r ∈ RM and xi a variable which occurs in the M -relation rt1...tn.

Definition 4.2.5 Let t1 be a term. Let t2 and t3 be two M -terms. Let α be a well-typed equation
block. Either x = t1 ∧ ¬px is a sub-formula of α. In this case, x is called α-leader of the equation
x = t1. Else t2 = t3 ∧

∧

i∈var(t2=t3)
pi is a sub-formula of α. In this case, the greatest variable in

var(t2 = t3) according to the order � such that T |= ∃!x t2 = t3∧
∧

i∈var(t2=t3)
pi is called α-leader

of the equation t2 = t3.

Definition 4.2.6 A block α is called solved block, iff:

1. α is well-typed and does not contain formulae of the form t1 = t2 or rt1...tn with r ∈ RM and
the ti’s terms which does not contain variables,

2. for each equation x = y in α, x � y,
3. each equation in α has a distinct α-leader which does not occur in M -relations of α,
4. if px and py are sub-formulas of α with x and y two α-leaders of two equations α1, α2 of α

then x 6∈ var(α2),
5. for all variable x which occurs in an equation of α we have T |= ∃?xα.

Property 4.2.7 Let α be a solved equation block different from the formula false and let x̄ be the
set of the α-leaders of the equations of α. We have T |= ∃!x̄α.

Property 4.2.8 If T is flexible then each block is equivalent in T to a solved block.
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4.3 Completeness of T

Theorem 4.3.1 If T is a flexible theory then T is complete.

We show this theorem using Theorem 3.1.2. The sets Ψ(u), A, A′ and A′′ are chosen as follows:

– Ψ(u) is the set of the formulae of the form ∃ȳ u = fȳ ∧ ¬pu, with f a non 0-ary function
symbol taken from F .

– A is the set of blocks.
– A′ is the set of the formulae of the form ∃x̄′α′, where:

• all the variables of x̄′ are reachable in α′ from free variables of ∃x̄′α′,
• α′ is a solved equation block, different from the formula false, and where the order � is

such that all the variables of x̄′ are greater than the free variables of ∃x̄′α′,
• all the equations of α′ of the form x0 = fx1...xn with f ∈ F − FM are reachable in α′

from free variables of ∃x̄′α′,
• if the M -equation t1 = t2 is a sub-formula of α′ then, each variable xi which occurs in it

is either a free variable of ∃x̄′α′ or reachable in α′ from free variables of ∃x̄′α′,

– A′′ is the set of solved relation blocks.

5 Conclusion

We have defined in this paper the structure of the M -extended trees for any model M . This
structure can be considered as a combination of the structure of finite or infinite trees with the
structure M . Having an axiomatization T of M we have given a first-order axiomatization T of
the M -extended trees structure and have shown that if T is flexible then T is complete. To prove
the completeness in this case, we have used our general sufficient condition. From this condition
we can extract a general algorithm for solving first-order constraints in T . Due to lack of space we
cannot present this algorithm in this paper. Just note that this algorithm uses the block defined in
our paper and transforms any formula ϕ in a particular formula ψ called solved formula equivalent
to ϕ in T . In particular if ϕ has no free variables then ψ is either the formula true or the formula
false. The correctness of our algorithm is another proof of the completeness of T of each flexible
theory T .

There exists a lot real and practical problems which can be represented by full first-order
formulae on M -extended trees. We can site for example the works of A. Colmerauer [4, 1] who has
realized the execution of Prolog III and IV using the M -extended trees where M is the structure
of the rational numbers together with the operations of addition and substraction and linear dense
order relation.

On the other hand S. Vorobyov [19] have shown that the problem of deciding if a proposition
without free variables is true or not in the trees theory is non-elementary, i.e. the complexity of all
algorithm which solve it is not bounded by a tower of powers of 2′s (with a top down evaluation)
with a fixed height. A. Colmerauer and B. Dao [8, 7] have also given a proof of non-elementary
complexity of solving constraints in the trees theory. Thus, it is normal that our sufficient condition
is complex and the properties of our blocks uses some nonclassical quantifiers. Nevertheless we
hope find some interesting class of complexities in the implementation of our algorithm as it has
been done in [8] in the theory of finite or infinite trees.

Actually we try to show the completeness of T where M is the structure of the real numbers
together with addition, substraction, multiplication and a linear dense order relation. We also
study the complexity and the expressiveness of the first-order constraints in T as it has done in
[7, 8].
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