
dlvhex: A System for Integrating Multiple Semantics in an
Answer-Set Programming Framework?

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9–11, A-1040 Vienna, Austria

{eiter,ianni,roman,tompits}@kr.tuwien.ac.at

Abstract. We briefly report on the development status of dlvhex, a reasoning engine for HEX-prog-
rams, which are nonmonotonic logic programs with higher-order atoms and external atoms. Higher-
order features are widely acknowledged as useful for various tasks and are essential in the context of
meta-reasoning. Furthermore, the possibility to exchange knowledge with external sources in a fully
declarative framework such as answer-set programming (ASP) is particularly important in view of
applications in the Semantic-Web area. Through external atoms, HEX-programs can deal with external
knowledge and reasoners of various nature, such as RDF datasets or description logics bases.

1 Introduction
Nonmonotonic semantics is often requested by Semantic-Web designers in cases where the reasoning ca-
pabilities of the Ontology layer of the Semantic Web turn out to be too limiting, since they are based on
monotonic logics. The widely acknowledged answer-set semantics of nonmonotonic logic programs [6],
which is arguably the most important instance of the answer-set programming (ASP) paradigm, is a natural
host for giving nonmonotonic semantics to the Rules, Logic, and Proof layers of the Semantic Web.

However, for important issues such as meta-reasoning in the context of the Semantic Web, no adequate
answer-set engines have been available so far. Motivated by this fact and the observation that, furthermore,
interoperability with other software is an important issue (not only in this context), in previous work [4], the
answer-set semantics has been extended to HEX programs, which are higher-order logic programs (which
accommodate meta-reasoning through higher-order atoms) with external atoms for software interoperabil-
ity. Intuitively, a higher-order atom allows to quantify values over predicate names, and to freely exchange
predicate symbols with constant symbols, like in the rule

C (X)← subClassOf (D, C), D(X).

An external atom facilitates the assignment of a truth value of an atom through an external source of
computation. For instance, the rule

t(Sub, P red, Obj)← &RDF [uri](Sub, P red, Obj)

computes the predicate t taking values from the predicate &RDF . The latter predicate extracts RDF state-
ments from the set of URIs specified by the extension of the predicate uri ; this task is delegated to an
external computational source (e.g., an external deduction system, an execution library, etc.). External
atoms allow for a bidirectional flow of information to and from external sources of computation such as
description logics reasoners. By means of HEX-programs, powerful meta-reasoning becomes available in a
decidable setting, e.g., not only for Semantic-Web applications, but also for meta-interpretation techniques
in ASP itself, or for defining policy languages.

Other logic-based formalisms, like TRIPLE [11] or F-Logic [9], feature also higher-order predicates for
meta-reasoning in Semantic-Web applications. Our formalism is fully declarative and offers the possibility
of nondeterministic predicate definitions with higher complexity in a decidable setting. This proved already
useful for a range of applications with inherent nondeterminism, such as ontology merging (cf. [12]) or
matchmaking, and thus provides a rich basis for integrating these areas with meta-reasoning.
? This work was partially supported by the Austrian Science Fund (FWF) under grant P17212-N04, and by the Eu-

ropean Commission through the IST Networks of Excellence REWERSE (IST-2003-506779) and CologNeT (IST-
2001-33123).



dlvhex: A System for Integrating Multiple Semantics in an Answer-Set Programming Framework 207

2 HEX-Programs

2.1 Syntax

HEX programs are built on mutually disjoint sets C, X , and G of constant names, variable names, and
external predicate names, respectively. Unless stated otherwise, elements from X (resp., C) are written
with first letter in upper case (resp., lower case), and elements from G are prefixed with “ & ”. Constant
names serve both as individual and predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple (Y0, Y1, . . . , Yn),
where Y0, . . . , Yn are terms and n ≥ 0 is its arity. Intuitively, Y0 is the predicate name; we thus also use the
familiar notation Y0(Y1, . . . , Yn). The atom is ordinary, if Y0 is a constant. For example, (x, rdf :type , c)
and node(X) are ordinary atoms, while D(a, b) is a higher-order atom. An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm), (1)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input list and output list, respectively),
and &g is an external predicate name.

It is possible to specify molecules of atoms in F-Logic-like syntax. For instance, gi [father → X, Z →

iu] is a shortcut for the conjunction father (gi, X), Z(gi, iu).
HEX-programs are sets of rules of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm, (2)

where m, k ≥ 0, α1, . . . , αk are higher-order atoms, and β1, . . . , βm are either higher-order atoms or
external atoms. The operator “not” is negation as failure (or default negation).

2.2 Semantics

The semantics of HEX-programs is given by generalizing the answer-set semantics [4]. The Herbrand base
of a program P , denoted HBP , is the set of all possible ground versions of atoms and external atoms
occurring in P obtained by replacing variables with constants from C. An interpretation relative to P is
any subset I ⊆ HBP containing only atoms.

We say that an interpretation I ⊆ HBP is a model of an atom a ∈ HBP iff a∈ I . Furthermore, I a
model of a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm) iff f&g(I, y1 . . ., yn, x1, . . . , xm) = 1,
where f&g is an (n+m+1)-ary Boolean function associated with &g, called oracle function, assigning
each element of HBP × C

n+m either 0 or 1.
This definition of satisfaction, together with a modified notion of a reduct as defined by Faber et al. [5],

enables us to define a conservative extension of the answer-set semantics for HEX-programs. For more
details, cf. [4].

Note that the answer-set semantics may yield no, one, or multiple models (i.e., answer sets) in general.
Therefore, for query answering, brave and cautious reasoning (truth in some resp. all models) is considered
in practice, depending on the application.

2.3 Usability of HEX-Programs

An interesting application scenario, where several features of HEX-programs come into play, is ontology
alignment. Merging knowledge from different sources in the context of the Semantic Web is a crucial
task [2] that can be supported by HEX-programs in various ways:

Importing external theories. This can be achieved as in the following manner:

triple(X, Y, Z)← &RDF [uri ](X, Y, Z),
triple(X, Y, Z)← &RDF [uri2 ](X, Y, Z),
proposition(P )← triple(P, rdf :type, rdf :Statement).



208 Thomas Eiter et al.

Searching in the space of assertions. In order to choose nondeterministically which propositions have to
be included in the merged theory and which not, statements like the following can be used:

pick (P ) ∨ drop(P )← proposition(P ).

Translating and manipulating reified assertions. For instance, it is possible to choose how to put RDF
triples (possibly including OWL assertions) in an easier manipulable and readable format, and to make
selected propositions true such as in the following way:

(X, Y, Z)← pick (P ), triple(P, rdf :subject , X),
triple(P, rdf :predicate , Y ),
triple(P, rdf :object , Z),

C(X)← (X, rdf :type , C).

Defining ontology semantics. The semantics of the ontology language at hand can be defined in terms of
entailment rules and constraints expressed in the language itself or in terms of external knowledge, like
in

D(X)← subClassof (D, C), C(X),
← &inconsistent [pick],

where the external predicate &inconsistent takes a set of assertions as input and establishes through
an external reasoner whether the underlying theory is inconsistent.

Performing default and closed-world reasoning in a controlled way. Assuming that a generic external
atom &DL[C](X) is available for querying the concept C in a given description logics base, the closed-
world assumption (CWA) can be stated as follows:

C ′(X)← not &DL[C](X), concept(C), cwa(C, C ′),

where concept(C) is a predicate which holds for all concepts and cwa(C, C ′) states that C ′ is the
CWA of C.
Inconsistency of the CWA can be checked by pushing back inferred values to the external knowledge
base:

set false(C, X)← cwa(C, C ′), C ′(X),
inconsistent ← &DL1 [set false ](b),

where &DL1 [N ](X) effects a check whether a knowledge base, augmented with all negated facts
¬c(a) such N(c, a) holds, entails the empty concept ⊥ (entailment of ⊥(b), for any constant b, is
tantamount to inconsistency).

3 Implementation

The evaluation principle of dlvhex is to split the program according to its dependency graph into compo-
nents and alternately call an answer-set solver (DLV) and the external atom functions for the respective
subprograms. The framework takes care of traversing the tree of components in the right order and com-
bining their resulting models. Composing the initial dependency graph from a nonground program is not
a trivial task, since higher-order atoms as well as the input list of an external atom have to be considered.
To this end, we defined a novel notion of atom dependency, which extends the traditional understanding
of dependencies within a logic program. This leads to novel types of stratification which help splitting a
HEX-program and choosing the suitable model generation strategies.

Further methods of increasing the efficiency of computation include a general classification of external
atoms regarding their functional properties. For instance, their evaluation functions may be monotonic or
linear with respect to a given input. Formalizing such knowledge allows for an intelligent caching algorithm
and thus for a reduction of interactions with the external computation source. Latest developments also
include a directive to syntactically handle namespaces and an algorithm for traversing the component graph
for disjunctive programs, eventually implementing the full HEX-program semantics.



dlvhex: A System for Integrating Multiple Semantics in an Answer-Set Programming Framework 209

To keep the development and usage of external atoms as flexible as possible, we decided to embed
them into plug-ins, i.e., libraries that define and provide one or more external atoms. Such plug-ins are
implemented as shared libraries, which link dynamically to the main application at runtime. A lean, object-
oriented interface reduces the effort of developing custom plug-ins to a minimum.

Moreover, we devised an XML-based markup language for specifying HEX-programs, based on and
extending RuleML (Rule Markup Language) [1]. We intend to integrate RuleML import and export mech-
anisms into dlvhex, as well as providing a Web-Service interface through standardized access mechanism
such as SOAP (Simple Object Access Protocol).

3.1 Available External Atoms

The RDF Plug-In RDF (Resource Description Framework) is a language for representing information
about resources in the World-Wide Web and is intended to represent meta-data about Web resources which
is machine-readable and -processable. RDF is based on the idea of identifying objects using Web identifiers
(called Uniform Resource Identifiers, or URIs), and describing resources in terms of simple properties and
property values. The RDF plug-in provides a single external atom, the &RDF atom, which enables the user
to import RDF-triples from any RDF knowledge base. It takes a single constant as input, which denotes the
RDF-source (a file path or Web address).

The Description-Logics Plug-In Description logics are an important class of formalisms for express-
ing knowledge about concepts and concept hierarchies (often denoted as ontologies). The basic building
blocks are concepts, roles, and individuals. Concepts describe the common properties of a collection of
individuals and can be considered as unary predicates interpreted as sets of objects. Roles are interpreted as
binary relations between objects. In previous work [3], we introduced dl-programs as a method to interface
description-logic knowledge bases with answer-set programs, allowing a bidirectional flow of informa-
tion. To model dl-programs in terms of HEX-programs, we developed the description-logics plug-in, which
includes three external atoms (these atoms—in accord to the semantics of dl-programs—also allow for
extending the description logic knowledge base prior to the actual query by means of the atoms’ input
parameters):

– the &dlC atom, which queries a concept (specified by an input parameter of the atom) and retrieves
its individuals,

– the &dlR atom, which queries a role and retrieves its individual pairs, and
– the &dlConsistent atom, which tests the (possibly extended) description logic knowledge base for

consistency.

The description-logics plug-in can access OWL ontologies, i.e., description logic knowledge bases in the
language SHOIN (D), utilizing the RACER reasoning engine [7].

3.2 Current Prototype

dlvhex has been implemented as a command-line application. It takes one or more HEX-programs as input
and directly prints the resultant models as output. Both input and output are given in classical textual logic-
programming notation. For the core reasoning process, dlvhex itself needs the answer-set solver DLV [10]
(and DLT [8] if F-Logic syntax is used).

For illustrating the syntax and usage of dlvhex, consider the following HEX-program which models the
search for personal contacts that stem from a FOAF-ontology,1 which is accessible by a URL. The program
uses the external atom &RDF :

triple(X,Y,Z) :-
&RDF["http://www.kr.tuwien.ac.at/staff/roman/foaf.rdf"](X,Y,Z).

iknow(X) :- triple("me","http://xmlns.com/foaf/0.1/knows",X).
friend(Y) :- iknow(X),triple(X,"http://xmlns.com/foaf/0.1/name",Y).

1 “FOAF” stands for “Friend Of A Friend”, and is an RDF vocabulary to describe people and their relationships.



210 Thomas Eiter et al.

Here, the first rule imports all triples found at the given URL into the logic-program predicate triple.
The second rule singles out all values that are objects of triples with "me" as subject and "http://
xmlns.com/foaf/0.1/knows" as predicate. The third rule further traverses the RDF-tree to single
out the name-values of the found individuals of the second rule.

Assuming that this program is represented by the file rdf.lp, dlvhex is called as follows:

user@host:˜> dlvhex --filter=friend rdf.lp

The --filter switch reduces the output of facts to the given predicate names. The result is a single
answer set:

{friend("Axel Polleres"), friend("Francesco Calimeri"),
friend("Wolfgang Faber")}

We will make dlvhex available both through source and binary packages. To ease becoming familiar
with the system, we also offer a simple Web-interface available at

http://www.kr.tuwien.ac.at/staff/roman/dlvhex.

It allows for entering a HEX-program and filter predicates and displays the resultant models. On the same
Web-page, we also supply a toolkit for developing custom plug-ins, embedded in the GNU autotools en-
vironment, which takes care for the low-level, system-specific build process and lets the plug-in author
concentrate his or her efforts on the implementation of the plug-in’s actual core functionality.

References

1. H. Boley, S. Tabet, and G. Wagner. Design Rationale for RuleML: A Markup Language for Semantic Web Rules.
In Proc. SWWS 2001, pages 381–401, 2001.

2. D. Calvanese, G. D. Giacomo, and M. Lenzerini. A Framework for Ontology Integration. In Proc. SWWS 2001,
pages 303–316, 2001.

3. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Nonmonotonic Description Logic Programs: Implementation
and Experiments. In Proc. LPAR 2004, pages 511–527, 2004.

4. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer Set Programming. In Proc. IJCAI 2005. Morgan Kaufmann, 2005.

5. W. Faber, N. Leone, and G. Pfeifer. Recursive Aggregates in Disjunctive Logic Programs: Semantics and Com-
plexity. In Proc. JELIA 2004, pages 200–212, 2004.

6. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New Generation
Computing, 9:365–385, 1991.

7. V. Haarslev and R. Möller. RACER System Description. In Proc. IJCAR 2001, pages 701–705, 2001.
8. G. Ianni, G. Ielpa, A. Pietramala, M. C. Santoro, and F. Calimeri. Enhancing Answer Set Programming with

Templates. In Proc. NMR 2004, pages 233–239, 2004.
9. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based Languages. Journal

of the ACM, 42(4):741–843, 1995.
10. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV System for Knowledge

Representation and Reasoning. ACM Transactions on Computational Logic. To appear.
11. M. Sintek and S. Decker. TRIPLE - A Query, Inference, and Transformation Language for the Semantic Web. In

Proc. ISWC 2002, pages 364–378, 2002.
12. K. Wang, G. Antoniou, R. W. Topor, and A. Sattar. Merging and Aligning Ontologies in dl-Programs. In Proc.

RuleML 2005 pages 160–171, 2005.


