
How to teach difference lists?

Ulrich Geske

Fraunhofer FIRST
D-12489 Berlin, Kekuléstr. 7

email: Ulrich.Geske@first.fraunhofer.de

Abstract

Lists are, on the one hand, a useful modeling construct in logic programming because of their
not predefined length, on the other hand the concatenation of lists by append(L1,L2,L3) is rather
inefficient because it copies the list L1. To avoid the invocation of the append/3-procedure an
alternative possibility is the use of incomplete lists of the form [el1, ... elk | Var], in which Var
describes a remainder of the list not specified completely. If there is an assignment of a concrete
list L for this variable in the program, it will results an efficient (physical) concatenation of the
first list elements with L without copying the elements el1,...elk. This physical concatenation does
not consist in an (extra-logically) replacing of a pointer (a memory address) but is a purely logical
operation since the reference to the list L was already created by the specification in the program.

From the mathematical point of view, the difference of the two lists [el1, ...elk | Var] and Var
denotes the initial piece [el1, ..., elk] of the complete list. E.g., the difference [1,2,3] arises from
the lists [1,2,3| X] and X or from [1,2,3,4,5] and [4.5] or [1,2,3,a] from [1,2,3,a] and [a]. The
first-mentioned possibility is the most general representation of the list difference [1,2,3]. Every
list may be represented as a difference list. The empty list can be expressed as a difference of the
two lists L and L, the list List is the difference of the list List and the empty list.

The combination of the two list components [el1, ...elk | Var] and Var in a structure with the
semantics of the list difference will be denoted as a “difference list”. Since such a combination is
based on the possibility of specifying incomplete lists, the Prolog standard does not provide any
standard notation for this. A specification of a difference list from the two lists L and R may be
given, by a list notation [L, R] or by the use of a separator, e.g. L−R or L\R (the used separator
must be defined in the concrete Prolog system) or as two separate arguments separated by commas
in the argument list.

Unfortunately, in programs the concatenation is very frequently expressed using a call of the
append/3 procedure. The reason for it may be the inadequate explanation of the use of incom-
plete lists and the difference list technique using such incomplete lists. Very different types of the
representations of difference lists and very different attitudes to them can befound in well–known
manuals and textbooks about Prolog.

On the one hand, Clocksin has described this technique in a tutorial [4] based on his book
“Clause and Effect” [3] as “probably one of the most ingenious programming techniques ever in-

vented yet neglected by mainstream computer science”. On the other hand, Dodds [10] opinion
concerning a pair of variables for the result of a list operation and the used accumulator, like (All,
Temp), is: “some people find it helpful to think of All and Temp as a special data structure called

difference list. We prefer to rest our account of the matter on the logical reading of the variable as

referring to any possible tail, rather than to speak of lists with variable tails ”, which can be read
in his textbook “Prolog. A Logical Approach”.

In this paper, a detailed summary of the presentations to difference lists and related topics
(accumulator technique) in the literature is given. One frequent problem with the list concatena-
tion by append/3 consists in invocations of append/3 after the recursive procedure call. We will
demonstrate, how such left–recursive procedures can be transformed into right–recursion using
the folding–/unfolding technique. In the sequel, we will consider different ways for realization of
append-free concatenations of programs. The different techniques which are essential for the list

34 Ulrich Geske

generation can be reduced to two methods which are essential for list processing: top-down- and
bottom-up generation of structures. For the present, we can show that the difference-list notation
is only syntactic sugar since it can be derived from the previous techniques by a simple syntactic
transformation. But difference lists are not only syntactic sugar after all, since a modeling tech-
nique using difference lists instead of additional arguments or accumulators can offer advantages.
A knowledge of the background can make it easier to use difference lists and promote their use in
programming.

References

1. OKeefe, Richard A.: The Craft of Prolog. The MIT Press. 1990.
2. Clark, K.L.; McCabe, F.G.: micro-Prolog: Programming in Logic. Prentice Hall International, 1984.
3. Clocksin, W.F.: Clause and Effect. Prolog Programming for the Working Programmer. Springer-

Verlag. 1997.
4. Clocksin, W.F.: Prolog Programming. Lecture “Prolog for Artificial Intelligence 2001-02” at University

of Cambridge, Computer Laboratory. 2002.
5. Clocksin, W.F.; Mellish, C.S.: Programming in Prolog. Springer-Verlag, 1981, 1984, 1987.
6. Colhoe, Helder; Cotta, José C.: Prolog by Example. Springer-Verlag, 1988.
7. Marriott, K.; Søndergaard, H.: Prolog Transformation by Introduction of Difference-Lists. TR 88/14.

Dept. CS, The University of Melbourne, 1988.
8. Sterling, L; Shapiro, E.: The Art of Prolog. The MIT Press, 1986. Seventh printing, 1991.
9. Maier, D.; Warren, D.S.: Computing with Logic. The Benjamin/Cummings Publisher Company, Inc.,

1988.
10. Dodd, Tony: Prolog. A Logical Approach.Oxford University Press, 1990

